- 【Gaussian Model】高斯分布模型
HP-Succinum
机器学习机器学习算法人工智能
目录高斯分布模型用于异常检测(GaussianModelforAnomalyDetection)1.高斯分布简介2.高斯分布模型用于异常检测(1)训练阶段:估计数据分布(2)检测阶段:计算概率判断异常点3.示例代码4.高斯分布异常检测的优缺点优点缺点5.适用场景6.结论高斯分布模型用于异常检测(GaussianModelforAnomalyDetection)在数据分析和机器学习任务中,异常检测(
- 机器学习之学习笔记
孤城laugh
机器学习学习笔记人工智能python
机器学习-学习笔记1.简介2.算法3.特征工程3.1数据集3.2特征提取3.3特征预处理3.4特征降维4.分类算法4.1`sklearn`转换器和估计器4.2K-近邻算法(KNN)4.3模型选择与调优4.4朴素贝叶斯算法4.5决策树4.6集成学习方法之随机森林5.回归算法5.1线性回归5.2过拟合与欠拟合5.3岭回归5.4逻辑回归(实际上是分类算法,用于解决二分类问题)6.聚类算法1.无监督学习2
- 大模型训练内存预估计算方法
junjunzai123
人工智能深度学习机器学习
方法论大模型在训练过程中,需要预估需要多少显存进行参数的存储,需要进行预估.来方便GPU的购买.举例以DeepSeek-V3模型为例,总共有671B个参数.B=Billion(十亿),因此,671B模型指拥有6710亿参数的模型。基础计算(以训练为例)假设使用FP16(16位浮点数)存储参数:每个参数占用2字节。671B参数总显存≈6710亿×2字节≈1,342GB实际训练时需额外存储梯度、优化器
- 常用Python数据分析库详解
weixin_34092370
pythonshell
Python之所以这么流行,这么好用,就是因为Python提供了大量的第三方的库,开箱即用,非常方便,而且还免费哦,学Python的同学里估计有30%以上是为了做数据分析师或者数据挖掘,所以数据分析相关的库一定要熟悉,那么常用的Python数据分析库有哪些呢?1.NumPyNumPy是Python科学计算的基础包,它提供:1).快速高效的多维数组对象ndarray;2).直接对数组执行数学运算及对
- 似然函数与极大似然估计
Shockang
机器学习数学通关指南机器学习人工智能数学概率论
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文1.似然函数:直观理解与数学定义核心概念似然函数是机器学习中参数估计的基石,它从数据与模型之间的关系出发,提供了一种优化参数的数学框架。直观理解:假设你正在调整相机参数以拍摄最清晰的照片。似然函数就像是一个"清晰度指标",告诉
- R语言广义加型模型(GAM)的运用例子及实现教程
Mrrunsen
R语言大学作业r语言开发语言
文章目录步骤1:加载所需包和数据步骤2:数据预处理步骤3:拟合广义加型模型步骤4:查看模型摘要和诊断模型摘要系数估计平滑项模型质量步骤5:预测和可视化结论广义加型模型(GeneralizedAdditiveModel,简称GAM)是一种灵活的非线性建模方法,在统计学和机器学习领域被广泛应用。GAM可以用于拟合非线性关系,适用于多个预测变量之间的复杂关系,并且可以处理连续和分类变量。本教程将向您展示
- 自动驾驶平行仿真(基础课程一)
Yours monkey brother
自动驾驶人工智能机器学习
一、线性回归每当我们想预测一个数值时,就会弹出回归问题价值。常见示例包括预测价格(房屋、股票、等)、预测住院时间(对于住院患者)、预测需求(零售额)等等。并非每个预测问题是经典回归的一种。稍后,我们将引入分类问题,其目标是预测一组类别的成员资格。作为一个运行示例,假设我们希望估计房屋(以美元计)基于其面积(以平方英尺为单位)和年龄(以年)。要开发一个预测房价的模型,我们需要得到我们亲身体验数据,包
- 【计算机视觉】手势识别
油泼辣子多加
计算机视觉计算机视觉opencv人工智能
手势识别是计算机视觉领域中的重要方向,通过对摄像机采集的手部相关的图像序列进行分析处理,进而识别其中的手势,手势被识别后用户就可以通过手势来控制设备或者与设备交互。完整的手势识别一般有手的检测和姿态估计、手部跟踪和手势识别等。一、手掌检测importcv2importmediapipeasmp#初始化MediaPipe手部模型mp_hands=mp.solutions.handshands=mp_
- python的统计库_python--学习笔记13 统计库
weixin_39959335
python的统计库
可以先绘制散点图查看数据分布情况,然后再使用检验包进行Statsmodels用于探索数据、估计模型、并运行统计检验的Python包。importstatsmodels.apiassmy=df['sepallengthh'][:50]x=df['sepalwidth'][:50]X=sm.add_constant(x)#在现有矩阵添加截距列results=sm.OLS(y,x).fit()#fit方
- DynamicSparse-MobileNet (DSMNet) 用于低功耗图像分类
闲人编程
人工智能实战教程—论文创新点分类人工智能数据挖掘DSMNet动态稀疏熵感知自适应
目录DynamicSparse-MobileNet(DSMNet)用于低功耗图像分类一、模型背景与动机二、模型创新点详细解析1.动态稀疏计算路径2.自适应通道缩放3.熵感知知识蒸馏三、数据集与预处理四、网络结构详解1.输入层与熵估计模块2.动态稀疏卷积块3.熵感知分类头五、模型优化策略1.优化器设计——Prodigy优化器2.动态计算损失3.损失函数设计4.正则化技术5.防止过拟合六、网络结构图与
- 图像算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
01.图像算法图像算法工程师的技术图谱和学习路径涵盖了多个技术领域,从基础知识到高级算法,涉及计算机视觉、深度学习、图像处理、数学和编程等多个方面。以下是图像算法工程师的技术图谱和学习路径的详细总结。1.基础数学与编程数学基础:线性代数:矩阵运算、特征值、特征向量、奇异值分解(SVD)等概率论与统计:概率分布、贝叶斯定理、最大似然估计(MLE)、假设检验等微积分:导数、梯度、最优化方法(梯度下降、
- ERR_FAILED 200 解决方案
执于代码
#【01.Bugs异常解决方法】前端chromejavascript
项目场景:提示:这里简述项目相关背景:ERR_FAILED200解决方案问题描述提示:这里描述项目中遇到的问题:在chrome的网络调试器中,我可以读到文件大小估计为10.0MB(而文件实际大小为14MB)。这就是为什么我认为这是由于一些Chrome或AngularHTTPClient的限制。原因分析:提示:这里填写问题的分析:我的NodeRESTAPI正确返回了状态为200的文件。失败来自Chr
- 矩阵理论与应用:矩阵范数
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
矩阵理论与应用:矩阵范数1.背景介绍1.1问题的由来矩阵范数在数学、工程、物理以及计算机科学等多个领域都有着广泛的应用。它提供了一种衡量矩阵大小或者矩阵变换的影响程度的方法。矩阵范数的概念对于理解矩阵的性质、数值稳定性、以及在机器学习和信号处理中的矩阵操作至关重要。例如,在数值线性代数中,矩阵范数用于评估算法的收敛性、误差估计和稳定性。在信号处理中,它可以用来评估信号的失真程度或者噪声的影响。1.
- oracle盲注技巧,sql盲注的深入讲解
韩军安
oracle盲注技巧
SQL注入大家都知道,很多新人都是从这里入门的,虽然注入语句倒背如流,可是其原理估计很少有人了解。稍微了解一下的也仅仅只是知道SQL注入语句只是一种为了使我们获取信息的一种畸形语句。Ps(很多人不知道SQl注入与SQL盲注的区别,现在我告诉你,没有区别。)首先我先讲讲微软对SQL注入的定义。(1)脚本注入式的攻击(2)恶意用户输入用来影响被执行的SQL脚本相信大家都看的懂。另外,我看到很多新手都在
- LCM亮度结构评估方法
观海的旅途
显示模组智能硬件
一.目录LCM亮度结构评估方法1.模组亮度计算公式2.影响模组亮度的因素3.影响背光亮度的因素分析4.背光亮度评估方法二.不同纬度详细评估计算方法1.模组亮度计算公式当客户提出模组亮度需求时,需要与OD确认玻璃穿透率的typical值与min值举例:TM030LDH01-00客户需求模组亮度400(typical);350min1首先与OD确认玻璃设计的穿透率(OD提供为5.5%typical;5
- 【产品经理修炼之道】-价值维思考模型在技术性需求中的应用
xiaoli8748_软件开发
产品经理
真正的产品,是满足用户需求痛点、给用户创造快感,或者成本节约带来的感受。这种感受既可感知,也有可能不可直接感知。产品经理到底要不要懂技术,是否技术出身的产品经理一定更有优势呢?对于这个问题的探讨,相信各位都能在各个产品论坛上看到,不少产品经理估计也参与争辩过。笔者自己曾是技术出身,且刚毕业时做全栈开发若干年,也有过技术架构经验,所以对于产品经理要不要懂开发,笔者认为懂总比不懂的好,不过之前所带过的
- 985计算机考研初试多少分稳,985考研一般需要多少分
与何人说
985计算机考研初试多少分稳
想要考研考进985高校里,公共课(政治+英语)不得低于140分,专业课尽可能120-140分左右比较稳。总体而言,考到380分可以在985里面挑一个不错的学校,但是好的专业估计难,有的可能还需要参加调剂。考研多少分能上985一般而言,985高校招硕士是320-350分才勉强过线,可国家线也就在260-290.大家看到这个差距,就知道985有多难考了吧。还是要根据具体学校具体专业来定,有的压分的学校
- MeanShift聚类分割算法
点云学习
c++pcl点云处理聚类算法pcl点云处理PCL3D视觉
目录1MeanShift算法的数学原理1.密度估计2.均值向量计算3.位置更新4.收敛条件2MeanShift算法的详细步骤1初始化2迭代过程3聚类3示例代码1MeanShift算法的数学原理MeanShift算法的核心思想是通过在高维空间中计算密度梯度并进行移动,找到数据点的密度峰值,从而实现聚类。下面详细介绍该算法的数学原理和每一步的推理公式。1.密度估计MeanShift算法通过核密度估计(
- Mean Shift聚类算法深度解析与实战指南
万事可爱^
机器学习修仙之旅#无监督学习算法聚类数据挖掘MeanShift均值漂移聚类均值算法
一、算法全景视角MeanShift(均值漂移)是一种基于密度梯度上升的非参数聚类算法,无需预设聚类数量,通过迭代寻找概率密度函数的局部最大值完成聚类。该算法在图像分割、目标跟踪等领域有广泛应用,尤其擅长处理任意形状的密度分布。二、核心原理剖析2.1核密度估计使用核函数对数据分布进行平滑估计,高斯核函数为:K(x)=12πhe−x22h2K(x)=\frac{1}{\sqrt{2\pi}h}e^{-
- A Bayesian Angular Superresolution Method With Lognormal Constraint for Sea-Surface Target 论文阅读
青铜锁00
论文阅读Radar论文阅读
目录1.研究背景与问题2.方法创新3.关键优势4.实验验证5.与传统方法对比6.结论与意义1.研究背景与问题核心挑战:实孔径雷达受限于天线孔径尺寸,导致角分辨率不足,影响海面目标(如船舶)的精细化探测。传统方法局限性:谱估计方法(如MUSIC、IAA):依赖多快拍数据,机械扫描雷达难以满足。正则化方法(如TSVD、l1/l2约束):假设噪声服从高斯分布,未考虑海杂波的非高斯特性(如Rayleigh
- yolo位姿估计实验
jarreyer
YOLO
目录介绍实验过程2.1数据集下载2.2模型和数据配置文件修改2.3模型训练参考链接1.介绍1.1简介YOLOv8-Pose是基于YOLOv4算法的姿势估计模型,旨在实现实时高效的人体姿势估计。姿势估计在计算机视觉领域具有重要意义,可广泛应用于视频监控、运动分析、健康管理等领域。1.2背景传统的姿势估计方法常需复杂网络架构和大量计算资源,导致实时性不佳。YOLOv8-Pose通过对YOLOv4算法进
- 【模块】Non-local Neural
dearr__
扒网络模块深度学习pytorchpython
论文《Non-localNeuralNetworks》作用非局部神经网络通过非局部操作捕获长距离依赖,这对于深度神经网络来说至关重要。这些操作允许模型在空间、时间或时空中的任何位置间直接计算相互作用,从而捕获长距离的交互和依赖关系。这种方法对于视频分类、对象检测/分割以及姿态估计等任务表现出了显著的改进。机制非局部操作通过在输入特征图的所有位置上计算响应的加权和来实现,其中权重由位置之间的关系(如
- 改进rust代码的35种具体方法-类型(二十一)-熟悉Cargo.toml版本使用
tomcat先生
rust开发语言后端
上一篇文章-改进rust代码的35种具体方法-类型(二十)-避免过度优化的诱惑“如果我们承认SemVer是一个有损的估计,只代表可能变化范围的子集,我们可以开始将其视为一个钝器。”——TitusWinters,“谷歌软件工程(O'Reilly)”Rust的软件包管理器Cargo允许根据语义版本控制(semver)自动选择Rust代码的依赖项。Cargo.toml节喜欢:[dependencies]
- 主成分回归(PCR)与特征值因子筛选:从理论到MATLAB实战
青橘MATLAB学习
多元分析回归matlab线性代数数学建模算法
内容摘要:本文深入解析主成分回归(PCR)的原理与MATLAB实现,结合Hald水泥数据案例对比PCR与普通回归的性能差异。详细讲解特征值筛选策略(累积贡献率、交叉验证),并提供单参数估计优化方法。通过完整代码与可视化结果,助力读者掌握高维数据建模与多重共线性处理技巧。关键词:主成分回归特征值筛选多重共线性MATLAB实现交叉验证—1.主成分回归(PCR)概述主成分回归(PrincipalComp
- 神经网络中的Adam
化作星辰
神经网络人工智能深度学习
Adam(AdaptiveMomentEstimation)是一种广泛使用的优化算法,结合了RMSprop和动量(Momentum)的优点。它通过计算梯度的一阶矩估计(mean)和二阶矩估计(uncenteredvariance),为每个参数提供自适应学习率。Adam由DiederikP.Kingma和JimmyBa在2014年的论文《Adam:AMethodforStochasticOptimi
- 扩散模型基本概念
AndrewHZ
深度学习新浪潮扩散模型计算机视觉流形学习生成式模型深度学习次深度学习人工智能
1.核心思想从最原始的DDPM来讲,扩散模型是用变分估计训练的马尔可夫链,相当于VAE+流模型。与标准化流相比,扩散模型的正向过程为预先定义的加噪过程,负责将图像x∼p(x)x\sim{p(x)}x∼
- 【解读】核密度图
dearr__
python开发语言
def:what核密度估计(KernelDensityEstimation,简称KDE)是一种用来估计随机变量概率密度函数的非参数方法实现:(库函数)howimportseabornassnsimportmatplotlib.pyplotasplt#使用Seaborn绘制KDE图sns.kdeplot(data,shade=True)#添加标签和标题plt.xlabel('Data')plt.yl
- 视觉SLAM十四讲 第7讲 (3) 相机运动估计 2D-2D/3D-2D/3D-3D
LYF0816LYF
slamlearning3d计算机视觉算法slam
相机运动估计2D-2D/3D-2D/3D-3D1.2D-2D:对极约束2.三角测量3.3D-2D:PnP3.1直接线性变换DLT3.2P3P3.3最小化投影误差求解PnP4.3D-3D:ICP4.1SVD方法4.2非线性优化方法5.总结若已经有匹配好的点对,要根据点对估计相机的运动,可以分为以下三种情况:2D-2D:即点对都是2D点,比如单目相机匹配到的点对。我们可以用对极几何来估计相机的运动。在
- Dify创建自定义工具实践,这里如果不熟悉估计会被折磨得不轻,建议一步一步跟着操作
几道之旅
Dify与Langflow智能体(Agent)知识库几道之旅AI专栏VVVIPandroid
文章目录前言使用fastapi编写一个你专属的服务1.**安装依赖**2.**保存代码**3.**运行应用**4.**访问API**测试接口:5.**访问文档**6.**停止应用**回到dify注册自定义工具fastapi自动生成的文档前言今天让同事帮我把一些写好的函数,使用fastapi封装成rest服务,再注册到dify的自定义工具。结果都两天了,还没弄完。因为之前搞过这一块,所以不觉得会花这
- 大模型之二十七-语音识别Whisper实例浅析
shichaog
神经网络&人工智能语音识别whisper人工智能
Whisper简介Whisper是OpenAI于2022年9月开源的一个多语种识别模型,目前支持99种语言,是目前性能最好的开源多语种识别ASR大模型,第一版版使用了68万小时标注好的语料预训练模型,而large-v3的标注数据超过了500万小时,其paper中并没透露使用语料的详细来源,估计是爬了一些版权数据,在Huggingface上提到模型有很强的泛化能力,能够在未经特定训练的情况下处理新的
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟