随机森林

1.1概述

    随机森林非常具有代表性的Bagging集成算法,是一个包含多棵决策树的评估器,分类数组成的森林就叫随机森林分类器,回归树所集成的森林就叫随机森林回归器。

1.2 RandomForestClassifier

class sklearn.ensemble.RandomForestClassifier (n_estimators=’10’, criterion=’gini’, max_depth=None,min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False,n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None)

随机森林_第1张图片
控制基评估器的参数

1.3 n_estimators

    n_estimators是森林中树木的数量,即基评估器的数量。这个参数对随机森林模型的精确性影响是单调的,n_estimators越大模型的效果往往越好,相应的,任何模型都有决策边界,n_estimators到达一定的程度之后,随机森林的精确性往往不在上升或是开始波动,并且,n_estimators越大需要的计算量和内存就越大,训练的时间也越长,对于这个参数,我们是渴望在训练难度和模型效果之间取得平衡。

    n_estimators的默认值在现有版本的sklearn中是10,但是在即将更新的0.22版本中,这个默认值会被修正为100。这个修正显示出了使用者的调参倾向:要更大的n_estimators。

随机森林_第2张图片
随机森林_第3张图片
随机森林_第4张图片

    1.4 random_state

        随机森林的本质是一种装袋集成算法,装袋集成算法是对基评估器的预测结果进行或是平均或是用多表决原则来决定集成评估器的结果,在刚才的红酒例子中,我们建立了25棵树,对任何一个样本而言,平均或多数表决原则下,当且仅当有13棵以上的树判断错误的时候,随机森林才会判断错误。单独一棵决策树对红酒数据集的分类准确率在0.85上下浮动,假设一棵树判断错误的可能性为0.2(ε),那20棵树以上都判断错误的可能性是:

i是判断错误的次数,也是判错的树的数量,ε是一棵树判断错误的概率,(1-ε)是判断正确的概率,共判对 25-i次。采用组合,是因为25棵树中,有任意i棵都判断错

        那现在就有一个问题了:我们说袋装法服从多数表决原则或对基分类器结果求平均,这即是说,我们默认森林中的每棵树应该都是不一样的,并且会返回不同的结果,如果随机森林中所有的数的判断结果都一致(全部判错或是全部判对),那随机森林无论应用何种集成原则来求结果,都无法比单棵决策树取得更好的效果才对,但是使用一样的类DecisionTreeClassifier,一样的参数,一样的训练集和测试集,为什么随机森林里的众多树会有不同的判断结果?sklearn中的分类树DecisionTreeClassifier自带随机性,所以随机森林中的树天生就都是不一样的。我们在讲解分类树时曾提到,决策树从最重要的特征中随机选择出一个特征来进行分枝,因此每次生成的决策树都不一样,这个功能由参数random_state控制。随机森林中其实也有random_state,用法和分类树中相似,只不过在分类树中,一个random_state只控制生成一棵树,而随机森林中的random_state控制的是生成森林的模式,而非让一个森林中只有一棵树。

    1.5 bootstrap & oob_score

        要让基分类器尽量都不一样,一种很容易理解的方法是使用不同的训练集进行训练,而袋装法正是通过又放回的随机抽样技术来形成不同的训练数据,bootstrap就是控制抽样技术的参数。

        在一个含有n个样本的原始训练集中,我们进行随机抽样,每次采用一个样本,并在抽取下一个样本之前将该样本放回原始数据集中,也就是下次采样的时候这个样本依然可能会被采集到,这样采集n次,最终得到一个和原始训练集一样大的n个样本组成的自助集,由于是随机采样,这样没次的自助集和原始数据集不同,和其他的采样集也是不同的。我们就可以自由创造取之不尽用之不竭,并且互不相同的自助集,用这些自助集来训练我们的基分类器,我们的基分类器自然也就各不相同了。bootstrap参数默认True,代表采用这种有放回的随机抽样技术。通常,这个参数不会被我们设置为False。

随机森林_第5张图片

        然而有放回抽样也会有自己的问题。由于是有放回,一些样本可能在同一个自助集中出现多次,而其他一些却可能

被忽略,一般来说,自助集大约平均会包含63%的原始数据。因为每一个样本被抽到某个自助集中的概率为

        当n足够大时,这个概率收敛于1-(1/e),约等于0.632。因此,会有约37%的训练数据被浪费掉,没有参与建模,这些数据被称为袋外数据(out of bag data,简写为oob)。除了我们最开始就划分好的测试集之外,这些数据也可以被用来作为集成算法的测试集。也就是说,在使用随机森林时,我们可以不划分测试集和训练集,只需要用袋外数据来测试我们的模型即可。当然,这也不是绝对的,当n和n_estimators都不够大的时候,很可能就没有数据掉落在袋外,自然也就无法使用oob数据来测试模型了。如果希望用袋外数据来测试,则需要在实例化时就将oob_score这个参数调整为True,训练完毕之后,我们可以用随机森林的另一个重要属性:oob_score_来查看我们的在袋外数据上测试的结果

随机森林_第6张图片

        随机森林的接口与决策树完全一致,因此依然有四个常用接口:apply, fit, predict和score。除此之外,还需要注意随机森林的predict_proba接口,这个接口返回每个测试样本对应的被分到每一类标签的概率,标签有几个分类就返回几个概率。如果是二分类问题,则predict_proba返回的数值大于0.5的,被分为1,小于0.5的,被分为0。传统的随机森林是利用袋装法中的规则,平均或少数服从多数来决定集成的结果,而sklearn中的随机森林是平均每个样本对应的predict_proba返回的概率,得到一个平均概率,从而决定测试样本的分类。

    1.6 Bonus:Bagging的另一个必要条件

        在使用袋装法时要求基评估器要尽量独立。其实,袋装法还有另一个必要条件:基分类器的判断准确率至少要超过随机分类器,即时说,基分类器的判断准确率至少要超过50%。之前我们已经展示过随机森林的准确率公式,基于这个公式,我们画出了基分类器的误差率ε和随机森林的误差率之间的图像。大家可以自己运行一下这段代码,看看图像呈什么样的分布。

随机森林_第7张图片

        可以从图像上看出,当基分类器的误差率小于0.5,即准确率大于0.5时,集成的效果是比基分类器要好的。相反,当基分类器的误差率大于0.5,袋装的集成算法就失效了。所以在使用随机森林之前,一定要检查,用来组成随机森林的分类树们是否都有至少50%的预测正确率。

    1.7 RandomForestRegressor

class sklearn.ensemble.RandomForestRegressor (n_estimators=’warn’, criterion=’mse’, max_depth=None,min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False,n_jobs=None, random_state=None, verbose=0, warm_start=False)

所有的参数,属性与接口,全部和随机森林分类器一致。仅有的不同就是回归树与分类树的不同,不纯度的指标,参数Criterion不一致。

    1.8 重要参数,属性与接口

        criterion 回归树衡量分枝质量的指标,支持的标准有三种:

        1)输入"mse"使用均方误差mean squared error(MSE),父节点和叶子节点之间的均方误差的差额将被用来作为特征选择的标准,这种方法通过使用叶子节点的均值来最小化L2损失

        2)输入“friedman_mse”使用费尔德曼均方误差,这种指标使用弗里德曼针对潜在分枝中的问题改进后的均方误差

        3)输入"mae"使用绝对平均误差MAE(mean absolute error),这种指标使用叶节点的中值来最小化L1损失

N是样本数量,i是每一个数据样本,fi是模型回归出的数值,yi是样本点i实际的数值标签

所以MSE的本质,其实是样本真实数据与回归结果的差异。在回归树中,MSE不只是我们的分枝质量衡量指标,也是我们最常用的衡量回归树回归质量的指标,当我们在使用交叉验证,或者其他方式获取回归树的结果时,我们往往选择均方误差作为我们的评估(在分类树中这个指标是score代表的预测准确率)。在回归中,我们追求的是,MSE越小越好。然而,回归树的接口score返回的是R平方,并不是MSE。R平方被定义如下:

随机森林_第8张图片
u是残差平方和(MSE * N),v是总平方和,N是样本数量,i是每一个数据样本,fi是模型回归出的数值,yi 是样本点i实际的数值标签。y帽是真实数值标签的平均数

R平方可以为正为负(如果模型的残差平方和远远大于模型的总平方和,模型非常糟糕,R平方就会为负),而均方误差永远为正。值得一提的是,虽然均方误差永远为正,但是sklearn当中使用均方误差作为评判标准时,却是计算”负均方误差“ (neg_mean_ squared_error)。这是因为sklearn在计算模型评估指标的时候,会考虑指标本身的性质,均方误差本身是一种误差,所以被sklearn划分为模型的一种损失(loss),因此在sklearn当中,都以负数表示。真正的均方误差MSE的数值,其实就是neg_mean_ squared_error去掉负号的数字。

你可能感兴趣的:(随机森林)