奇异值分解(SVD)原理与在降维中的应用(转载)

转载自https://www.cnblogs.com/pinard/p/6251584.html

奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。是很多机器学习算法的基石。本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的。

1. 回顾特征值和特征向量

    我们首先回顾下特征值和特征向量的定义如下:

Ax=λxAx=λx

其中A是一个n×nn×n的矩阵,xx是一个nn维向量,则我们说λλ是矩阵A的一个特征值,而xx是矩阵A的特征值λλ所对应的特征向量。

求出特征值和特征向量有什么好处呢? 就是我们可以将矩阵A特征分解。如果我们求出了矩阵A的nn个特征值λ1≤λ2≤...≤λnλ1≤λ2≤...≤λn,以及这nn个特征值所对应的特征向量{w1,w2,...wn}{w1,w2,...wn},那么矩阵A就可以用下式的特征分解表示:

A=WΣW−1A=WΣW−1

其中W是这nn个特征向量所张成的n×nn×n维矩阵,而ΣΣ为这n个特征值为主对角线的n×nn×n维矩阵。

一般我们会把W的这nn个特征向量标准化,即满足||wi||2=1||wi||2=1, 或者说wTiwi=1wiTwi=1,此时W的nn个特征向量为标准正交基,满足WTW=IWTW=I,即WT=W−1WT=W−1, 也就是说W为酉矩阵。

    这样我们的特征分解表达式可以写成

A=WΣWTA=WΣWT

    注意到要进行特征分解,矩阵A必须为方阵。那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗?答案是可以,此时我们的SVD登场了。

2.  SVD的定义

SVD也是对矩阵进行分解,但是和特征分解不同,SVD并不要求要分解的矩阵为方阵。假设我们的矩阵A是一个m×nm×n的矩阵,那么我们定义矩阵A的SVD为:

A=UΣVTA=UΣVT

其中U是一个m×mm×m的矩阵,ΣΣ是一个m×nm×n的矩阵,除了主对角线上的元素以外全为0,主对角线上的每个元素都称为奇异值,V是一个n×nn×n的矩阵。U和V都是酉矩阵,即满足UTU=I,VTV=IUTU=I,VTV=I。下图可以很形象的看出上面SVD的定义:

那么我们如何求出SVD分解后的U,Σ,VU,Σ,V这三个矩阵呢?

如果我们将A的转置和A做矩阵乘法,那么会得到n×nn×n的一个方阵ATAATA。既然ATAATA是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:

(ATA)vi=λivi(ATA)vi=λivi

这样我们就可以得到矩阵ATAATA的n个特征值和对应的n个特征向量vv了。将ATAATA的所有特征向量张成一个n×nn×n的矩阵V,就是我们SVD公式里面的V矩阵了。一般我们将V中的每个特征向量叫做A的右奇异向量。

如果我们将A和A的转置做矩阵乘法,那么会得到m×mm×m的一个方阵AATAAT。既然AATAAT是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:

(AAT)ui=λiui(AAT)ui=λiui

这样我们就可以得到矩阵AATAAT的m个特征值和对应的m个特征向量uu了。将AATAAT的所有特征向量张成一个m×mm×m的矩阵U,就是我们SVD公式里面的U矩阵了。一般我们将U中的每个特征向量叫做A的左奇异向量。

U和V我们都求出来了,现在就剩下奇异值矩阵ΣΣ没有求出了。由于ΣΣ除了对角线上是奇异值其他位置都是0,那我们只需要求出每个奇异值σσ就可以了。

    我们注意到:

A=UΣVT⇒AV=UΣVTV⇒AV=UΣ⇒Avi=σiui⇒σi=Avi/uiA=UΣVT⇒AV=UΣVTV⇒AV=UΣ⇒Avi=σiui⇒σi=Avi/ui

这样我们可以求出我们的每个奇异值,进而求出奇异值矩阵ΣΣ。

上面还有一个问题没有讲,就是我们说ATAATA的特征向量组成的就是我们SVD中的V矩阵,而AATAAT的特征向量组成的就是我们SVD中的U矩阵,这有什么根据吗?这个其实很容易证明,我们以V矩阵的证明为例。

A=UΣVT⇒AT=VΣUT⇒ATA=VΣUTUΣVT=VΣ2VTA=UΣVT⇒AT=VΣUT⇒ATA=VΣUTUΣVT=VΣ2VT

上式证明使用了:UTU=I,ΣT=Σ。UTU=I,ΣT=Σ。可以看出ATAATA的特征向量组成的的确就是我们SVD中的V矩阵。类似的方法可以得到AATAAT的特征向量组成的就是我们SVD中的U矩阵。

    进一步我们还可以看出我们的特征值矩阵等于奇异值矩阵的平方,也就是说特征值和奇异值满足如下关系:

σi=λi−−√σi=λi

这样也就是说,我们可以不用σi=Avi/uiσi=Avi/ui来计算奇异值,也可以通过求出ATAATA的特征值取平方根来求奇异值。

3. SVD计算举例

    这里我们用一个简单的例子来说明矩阵是如何进行奇异值分解的。我们的矩阵A定义为:

A=⎛⎝⎜011110⎞⎠⎟A=(011110)

我们首先求出ATAATA和AATAAT

ATA=(011110)⎛⎝⎜011110⎞⎠⎟=(2112)ATA=(011110)(011110)=(2112)

AAT=⎛⎝⎜011110⎞⎠⎟(011110)=⎛⎝⎜110121011⎞⎠⎟AAT=(011110)(011110)=(110121011)

进而求出ATAATA的特征值和特征向量:

λ1=3;v1=(1/2–√1/2–√);λ2=1;v2=(−1/2–√1/2–√)λ1=3;v1=(1/21/2);λ2=1;v2=(−1/21/2)

接着求AATAAT的特征值和特征向量:

λ1=3;u1=⎛⎝⎜1/6–√2/6–√1/6–√⎞⎠⎟;λ2=1;u2=⎛⎝⎜1/2–√0−1/2–√⎞⎠⎟;λ3=0;u3=⎛⎝⎜1/3–√−1/3–√1/3–√⎞⎠⎟λ1=3;u1=(1/62/61/6);λ2=1;u2=(1/20−1/2);λ3=0;u3=(1/3−1/31/3)

利用Avi=σiui,i=1,2Avi=σiui,i=1,2求奇异值:

⎛⎝⎜011110⎞⎠⎟(1/2–√1/2–√)=σ1⎛⎝⎜1/6–√2/6–√1/6–√⎞⎠⎟⇒σ1=3–√(011110)(1/21/2)=σ1(1/62/61/6)⇒σ1=3

⎛⎝⎜011110⎞⎠⎟(−1/2–√1/2–√)=σ2⎛⎝⎜1/2–√0−1/2–√⎞⎠⎟⇒σ2=1(011110)(−1/21/2)=σ2(1/20−1/2)⇒σ2=1

当然,我们也可以用σi=λi−−√σi=λi直接求出奇异值为3–√3和1.

 最终得到A的奇异值分解为:

A=UΣVT=⎛⎝⎜1/6–√2/6–√1/6–√1/2–√0−1/2–√1/3–√−1/3–√1/3–√⎞⎠⎟⎛⎝⎜3–√00010⎞⎠⎟(1/2–√−1/2–√1/2–√1/2–√)A=UΣVT=(1/61/21/32/60−1/31/6−1/21/3)(300100)(1/21/2−1/21/2)

4. SVD的一些性质

    上面几节我们对SVD的定义和计算做了详细的描述,似乎看不出我们费这么大的力气做SVD有什么好处。那么SVD有什么重要的性质值得我们注意呢?

    对于奇异值,它跟我们特征分解中的特征值类似,在奇异值矩阵中也是按照从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上的比例。也就是说,我们也可以用最大的k个的奇异值和对应的左右奇异向量来近似描述矩阵。也就是说:

Am×n=Um×mΣm×nVTn×n≈Um×kΣk×kVTk×nAm×n=Um×mΣm×nVn×nT≈Um×kΣk×kVk×nT

其中k要比n小很多,也就是一个大的矩阵A可以用三个小的矩阵Um×k,Σk×k,VTk×nUm×k,Σk×k,Vk×nT来表示。如下图所示,现在我们的矩阵A只需要灰色的部分的三个小矩阵就可以近似描述了。

奇异值分解(SVD)原理与在降维中的应用(转载)_第1张图片

    由于这个重要的性质,SVD可以用于PCA降维,来做数据压缩和去噪。也可以用于推荐算法,将用户和喜好对应的矩阵做特征分解,进而得到隐含的用户需求来做推荐。同时也可以用于NLP中的算法,比如潜在语义索引(LSI)。下面我们就对SVD用于PCA降维做一个介绍。

5. SVD用于PCA

在主成分分析(PCA)原理总结中,我们讲到要用PCA降维,需要找到样本协方差矩阵XTXXTX的最大的d个特征向量,然后用这最大的d个特征向量张成的矩阵来做低维投影降维。可以看出,在这个过程中需要先求出协方差矩阵XTXXTX,当样本数多样本特征数也多的时候,这个计算量是很大的。

注意到我们的SVD也可以得到协方差矩阵XTXXTX最大的d个特征向量张成的矩阵,但是SVD有个好处,有一些SVD的实现算法可以不求先求出协方差矩阵XTXXTX,也能求出我们的右奇异矩阵VV。也就是说,我们的PCA算法可以不用做特征分解,而是做SVD来完成。这个方法在样本量很大的时候很有效。实际上,scikit-learn的PCA算法的背后真正的实现就是用的SVD,而不是我们我们认为的暴力特征分解。

    另一方面,注意到PCA仅仅使用了我们SVD的右奇异矩阵,没有使用左奇异矩阵,那么左奇异矩阵有什么用呢?

假设我们的样本是m×nm×n的矩阵X,如果我们通过SVD找到了矩阵XXTXXT最大的d个特征向量张成的m×dm×d维矩阵U,则我们如果进行如下处理:

X′d×n=UTd×mXm×nXd×n′=Ud×mTXm×n

可以得到一个d×nd×n的矩阵X‘,这个矩阵和我们原来的m×nm×n维样本矩阵X相比,行数从m减到了k,可见对行数进行了压缩。也就是说,左奇异矩阵可以用于行数的压缩。相对的,右奇异矩阵可以用于列数即特征维度的压缩,也就是我们的PCA降维。

6. SVD小结

    SVD作为一个很基本的算法,在很多机器学习算法中都有它的身影,特别是在现在的大数据时代,由于SVD可以实现并行化,因此更是大展身手。SVD的原理不难,只要有基本的线性代数知识就可以理解,实现也很简单因此值得仔细的研究。当然,SVD的缺点是分解出的矩阵解释性往往不强,有点黑盒子的味道,不过这不影响它的使用。

你可能感兴趣的:(奇异值分解(SVD)原理与在降维中的应用(转载))