Hadoop:MapReduce之倒排索引(Combiner和Partitioner的使用)

Hadoop:MapReduce之倒排索引

  • 前言
  • 一、案例要求
  • 二、实现过程
    • 1.IntelliJ IDEA 创建Maven工程
    • 2.完整代码
    • 3.Maven打包
    • 4.Hadoop集群运行
  • 推荐Hadoop学习视频

前言

本案例有一定门槛,需要一点Java基础,Hadoop入门级知识,涉及Maven管理,pom配置文件,Maven打包,Linux虚拟机的使用,Hadoop集群,若阅读期间感觉吃力请自行补课。当然有疑问,也欢迎评论留意或私信我。

一、案例要求

1) 实现倒排索引效果:统计每个单词在不同文件中的出现次数;查看下方的案例说明;
2) 输入:自己编辑几个文件,例如 a.txt,b.txt,c.txt。
每个文件的内容为若干行单词,单词之间以空格分开,
并将这些文件上传到 hdfs 的/reversed 目录下;例如a.txt的内容:
hadoop google scau
map hadoop reduce
hive hello hbase
3) 编写程序实现单词的倒排索引效果;
4) 分区要求:以 A-M 字母开头(包含小写)的单词出现
在 0 区;以 N-Z 字母开头的单词出现在 1 区;其余开
头的单词出现在 2 区;
5) 单词的输出形式:hadoop a.txt->2,b.txt->1
,其中
hadoop 是单词(也作为输出的 key),”
a.txt->2,b.txt->1”表示输出的 value,即表示
hadoop 单词在 a.txt 文件中出现次数为 2,在 b.txt
文件中出现次数为 1;
案例说明:
第一次 MapReduce,统计各文档中不同单词的出现次数;SCAU
输出结果(K,V)的形式示例(可以自定义,默认以\t 分
隔)如下:
hadoop->a.txt 2
hadoop->b.txt 1
map->a.txt 1
map->b.txt 1
第二次 MapReduce,将以上结果(路径)作为输入,处理后
输出倒排索引;
输出结果(K,V)的形式为:
hadoop a.txt->2,b.txt->1
map a.txt->1,b.txt->1
其他:根据 context 获取文件名:
FileSplit inputSplit = (FileSplit)
context.getInputSplit();
Path path = inputSplit.getPath();
String filename = path.getName();

二、实现过程

1.IntelliJ IDEA 创建Maven工程

项目层次结构如图:
Hadoop:MapReduce之倒排索引(Combiner和Partitioner的使用)_第1张图片

2.完整代码

ReversedMapper.java

package reversedindex;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;

import java.io.IOException;


public class ReversedMapper extends Mapper<LongWritable, Text,Text,Text> {
     
    private Text outKey = new Text();
    private Text outValue = new Text("1");
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
     
        FileSplit inputSplit = (FileSplit)context.getInputSplit();
        String fileName = inputSplit.getPath().getName();
        String[] words = value.toString().split(" ");
        for (String word : words) {
     
            outKey.set(word+"->"+fileName);
            context.write(outKey,outValue);
        }
    }
}

ReversedCombiner.java

package reversedindex;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class ReversedCombiner extends Reducer<Text,Text,Text, Text> {
     
    private Text outKey = new Text();
    private Text outValue = new Text();
    @Override
    protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
     
        int count = 0;
        for (Text value : values) {
     
            count+=Integer.parseInt(value.toString());
        }
        String[] words = key.toString().split("->");
        outKey.set(words[0]);
        outValue.set(words[1]+"->"+count);
        context.write(outKey,outValue);
    }
}

ReversedPartitioner.java

package reversedindex;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

public class ReversedPartitioner extends Partitioner<Text,Text> {
     
    @Override
    public int getPartition(Text text, Text text2, int i) {
     
        char head = Character.toLowerCase(text.toString().charAt(0));
        if(head>='a'&& head<='m')
            return 0;
        else if(head>'m'&& head<='z')
            return 1;
        else
            return 2;
    }
}

ReversedReducer.java

package reversedindex;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class ReversedReducer extends Reducer<Text,Text, Text,Text> {
     
    private Text outValue = new Text();
    @Override
    protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
     
        StringBuilder stringBuilder = new StringBuilder();
        for (Text value : values) {
     
            stringBuilder.append(value.toString()).append(",");
        }
        String outStr = stringBuilder.substring(0,stringBuilder.length()-1);
        outValue.set(outStr);
        context.write(key,outValue);
    }
}

ReversedIndex.java

package reversedindex;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;



public class ReversedIndex{
     
    public static void main(String[] args) throws Exception {
     
        Job job = Job.getInstance(new Configuration());
        job.setJarByClass(ReversedIndex.class);

        job.setMapperClass(ReversedMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);

        job.setReducerClass(ReversedReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);

        job.setCombinerClass(ReversedCombiner.class);

        job.setPartitionerClass(ReversedPartitioner.class);
        job.setNumReduceTasks(3);
        FileInputFormat.setInputPaths(job,args[0]);
        FileOutputFormat.setOutputPath(job,new Path(args[1]));

        boolean result = job.waitForCompletion(true);
        System.exit(result?0:1);
    }
}

pom.xml


<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0modelVersion>

    <groupId>org.examplegroupId>
    <artifactId>MapReduceExp3artifactId>
    <version>1.0-SNAPSHOTversion>

    <properties>
        <hadoop.version>3.1.3hadoop.version>
        <maven.compiler.source>8maven.compiler.source>
        <maven.compiler.target>8maven.compiler.target>
    properties>
    <dependencies>
        <dependency>
            <groupId>org.apache.hadoopgroupId>
            <artifactId>hadoop-clientartifactId>
            <version>${hadoop.version}version>
        dependency>
        <dependency>
            <groupId>org.apache.hadoopgroupId>
            <artifactId>hadoop-commonartifactId>
            <version>${hadoop.version}version>
        dependency>

        <dependency>
            <groupId>org.apache.hadoopgroupId>
            <artifactId>hadoop-hdfsartifactId>
            <version>${hadoop.version}version>
        dependency>
        <dependency>
            <groupId>org.apache.hadoopgroupId>
            <artifactId>hadoop-mapreduce-client-coreartifactId>
            <version>${hadoop.version}version>
        dependency>
        <dependency>
            <groupId>org.testnggroupId>
            <artifactId>testngartifactId>
            <version>RELEASEversion>
        dependency>
        <dependency>
            <groupId>log4jgroupId>
            <artifactId>log4jartifactId>
            <version>1.2.17version>
        dependency>
        <dependency>
            <groupId>junitgroupId>
            <artifactId>junitartifactId>
            <version>4.12version>
            <scope>testscope>
        dependency>
    dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.pluginsgroupId>
                <artifactId>maven-compiler-pluginartifactId>
                <version>3.1version>
                <configuration>
                    <source>1.8source>
                    <target>1.8target>
                    <encoding>UTF-8encoding>
                configuration>
            plugin>
        plugins>
    build>
project>

3.Maven打包

Hadoop:MapReduce之倒排索引(Combiner和Partitioner的使用)_第2张图片
如图所示,在右侧点击Maven的package进行打包,打包结果会在左侧的target文件夹中输出。最终需要的只是标红的Jar包。

4.Hadoop集群运行

前序的配置步骤此处跳过,将本地Jar包发送到主节点主机自选的文件夹,然后开启start-dfs.sh和start-yarn.sh开启hdfs和yarn集群,在hdfs里新建reversed文件夹,通过浏览器localhost:9870打开hdfs可视化网页,竟然文件夹管理上传a.txt,b.txt等到reversed文件夹里。
主节点主机上执行:hadoop jar 指定jar包 项目java目录开始的主类路径 /reversed 不存在的输出文件夹
本案例指令供参考对照 :
hadoop jar MapReduceExp3-1.0-SNAPSHOT.jar reversedindex.ReversedIndex /reversed /reversed_out

Hadoop:MapReduce之倒排索引(Combiner和Partitioner的使用)_第3张图片
运行完毕后可在hdfs可视化页面查看reversed_out文件夹中的结果。

推荐Hadoop学习视频

黑马的课程,亲测很不错:https://www.bilibili.com/video/BV1JT4y1g7nM
解决本案例的视频讲解,适合快速入门:
Hadoop之MapReduce实战-倒排索引(上)https://www.bilibili.com/video/BV1Vt411v7jH
MapReduce实战-倒排索引(下):https://www.bilibili.com/video/BV1Lt411v7nZ

你可能感兴趣的:(分布与并行,Linux,hadoop,java,mapreduce,maven)