树莓派摄像头运行物体检测 - tensorflow with SSD

环境

  • 首先安装一下matplotlib库:
    sudo pip install matplotlib

  • 下载1.4.1的tensorflow
    https://github.com/lhelontra/tensorflow-on-arm/releases

  • 安装

sudo pip uninstall tensorflow
sudo pip install --upgrade tensorflow-1.4.1-cp27-none-linux_armv7l.whl

准备模型

  • 下载tensorflow提供的models API并解压,我这里解压后的目录为models_master,下载路径:
    https://github.com/tensorflow/models/tree/master/research/object_detection/models
  • 下载训练好的模型并放到上一步models_master下的object_detection/models目录,下载路径:
    https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
    这里下载几个典型的:ssd_mobilenet_v1_coco_2017_11_17faster_rcnn_resnet101_cocomask_rcnn_inception_v2_coco
    注:做物体检测的网络有很多种,如faster rcnn,ssd,yolo等等,通过不同维度的对比,各个网络都有各自的优势。
    毕竟树莓派计算能力有限,我们这里先选择专门为速度优化过最快的网络SSD,以及经典的faster-rcnn作对比,再加上能显示mask的高端网络,,,
    事实上yolo v3刚出来,比SSD更快,而faster rcnn相对来说运行慢的多了,后面可以都尝试对比一下,目前先把基线系统搭建好。

Protobuf 安装与配置

  • 说明
    protobuf是Google开发的一种混合语言数据标准,提供了一种轻便高效的结构化数据存储格式,可以用于结构化数据序列化。很适合做数据存储或 RPC 数据交换格式。可用于通讯协议、数据存储等领域的语言无关、平台无关、可扩展的序列化结构数据格式。目前提供了 C++、Java、Python 三种语言的 API。
    下载地址:https://github.com/google/protobuf/releases
    我们这里下载最新版本 protobuf-all-3.5.1.tar.gz
  • 安装
tar -xf  protobuf-all-3.5.1.tar.gz  
cd protobuf-3.5.1  
./configure   
make   
make check   ->这一步是检查编译是否正确,耗时非常长,可略过
sudo make install  
sudo ldconfig  ->更新库搜索路径,否则可能找不到库文件

如果运行了make check,结果如下,可以看到所有的测试用例都PASS了,说明编译正确:

============================================================================
Testsuite summary for Protocol Buffers 3.5.1
============================================================================
# TOTAL: 7
# PASS:  7
# SKIP:  0
# XFAIL: 0
# FAIL:  0
# XPASS: 0
# ERROR: 0
============================================================================
  • 配置
    配置的目的是将proto格式的数据转换为python格式,从而可以在python脚本中调用,进入目录models-master/research,运行:
protoc object_detection/protos/*.proto --python_out=.

转换完毕后可以看到在object_detection/protos/目录下多了许多*.py文件。

代码

这里的代码很简单,因为基本实现都已经有了,我们只是调用一下接口实现功能即可。

import numpy as np
import os
import sys
import tarfile
import tensorflow as tf
import cv2
import time

from collections import defaultdict

# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("../..")

from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util

# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'
#MODEL_NAME = 'faster_rcnn_resnet101_coco_11_06_2017'
#MODEL_NAME = 'ssd_inception_v2_coco_11_06_2017'
MODEL_FILE = MODEL_NAME + '.tar.gz'

# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'

# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('/home/yinan/object_detect/models-master/research/object_detection/data', 'mscoco_label_map.pbtxt')

#extract the ssd_mobilenet
start = time.clock()
NUM_CLASSES = 90
#opener = urllib.request.URLopener()
#opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
   file_name = os.path.basename(file.name)
   if 'frozen_inference_graph.pb' in file_name:
      tar_file.extract(file, os.getcwd())
end= time.clock()
print('load the model',(end-start))
detection_graph = tf.Graph()
with detection_graph.as_default():
  od_graph_def = tf.GraphDef()
  with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
    serialized_graph = fid.read()
    od_graph_def.ParseFromString(serialized_graph)
    tf.import_graph_def(od_graph_def, name='')

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)

categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

cap = cv2.VideoCapture(0)
with detection_graph.as_default():
  with tf.Session(graph=detection_graph) as sess:
      writer = tf.summary.FileWriter("logs/", sess.graph)
      sess.run(tf.global_variables_initializer())
      while(1):
        start = time.clock()
        ret, frame = cap.read()
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
        image_np=frame
        # the array based representation of the image will be used later in order to prepare the
        # result image with boxes and labels on it.
        # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
        image_np_expanded = np.expand_dims(image_np, axis=0)
        image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
        # Each box represents a part of the image where a particular object was detected.
        boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
        # Each score represent how level of confidence for each of the objects.
        # Score is shown on the result image, together with the class label.
        scores = detection_graph.get_tensor_by_name('detection_scores:0')
        classes = detection_graph.get_tensor_by_name('detection_classes:0')
        num_detections = detection_graph.get_tensor_by_name('num_detections:0')
        # Actual detection.

        (boxes, scores, classes, num_detections) = sess.run(
          [boxes, scores, classes, num_detections],
          feed_dict={image_tensor: image_np_expanded})
        # Visualization of the results of a detection.
        vis_util.visualize_boxes_and_labels_on_image_array(
          image_np,
          np.squeeze(boxes),
          np.squeeze(classes).astype(np.int32),
          np.squeeze(scores),
          category_index,
          use_normalized_coordinates=True,
          line_thickness=6)
        end = time.clock()
        #print('frame:',1.0/(end - start))
        print 'One frame detect take time:',end - start

        cv2.imshow("capture", image_np)
        print('after cv2 show')
        cv2.waitKey(1)
cap.release()
cv2.destroyAllWindows()

保存为 detect.py,到目录models-master/research/object_detection/models下。

运行

命令:

sudo chmod 666 /dev/video0
python detect.py

效果

SSD模型

下图可以看到,SSD模型加载模型花了8s,差不多一张图识别时间在5s:


image.png

PS. 为什么把房间识别成了book...

faster-RCNN模型

faster-RCNN,加载模型83s,内存不够,跑不起来。。。


树莓派摄像头运行物体检测 - tensorflow with SSD_第1张图片
image.png

mask SSD模型

mask模型可以描绘出轮廓,看起来更高端,加载模型25s,遇到个问题:


image.png

接下来查一下
CPU占用率100%,内存占用60%多

你可能感兴趣的:(树莓派摄像头运行物体检测 - tensorflow with SSD)