AI智能客服系列1-python基于Keras实现翻译系统/聊天机器人Seq2Seq模型+attention(理论篇-图文详解)智能对话系统专辑《一》

对话机器人是最近一个热门话题,许多公司都在开发自己的智能客服系统,笔者将围绕智能对话、智能翻译系统整理出核心技术模型的原理和实战代码详解,撰写【智能聊天机器人技术专辑篇】。
此篇是:【智能客服对话系统专辑:《一、理论篇-核心技术模型原理图文分解》】

下面我们先来看下聊天机器人的神仙组合模型Seq2Seq+attention起源:
Seq2Seq 于 2013年、2014 年被多位学者共同提出,在机器翻译任务中取得了非常显著的效果,随后提出的 attention 模型更是将 Seq2Seq推上了神坛,Seq2Seq+attention 的组合横扫了非常多的任务,只需要给定足够数量的 input-output pairs,通过设计两端的 sequence 模型和 attention 模型,就可以训练出一个不错的模型。除了应用在机器翻译任务中,其他很多的文本生成任务都可以基于 Seq2Seq 模型来做,比如:文本摘要生成、对话生成等。

一、seq2seq模型原理:

seq2seq简单来说就是编码+解码器,把一个语言序列翻译成另一种语言序列,整个处理过程主要使用深度神经网络( LSTM (长短记忆网络)。脑补小时候看抗日大片地道战时,一边是编码发送情报,一边是接收情报用特定的模型进行解码,保证信息不被截胡,不过基本最后都会被我党机智神勇侦破。所以我们最重要的就是理解清楚,这背后的核心原理和模型。

你可能感兴趣的:(聊天机器人,人工智能技术)