#if _MSC_VER > 1000
#pragma once
#endif
#ifndef _LIST_
#define _LIST_
#include
#include
#include
#include
#include
#include
#ifdef _MSC_VER
#pragma pack(push,8)
#endif
_STD_BEGIN
template<class _Ty, class _A = allocator<_Ty> >
class list {
protected:
struct _Node;
friend struct _Node;
typedef _POINTER_X(_Node, _A) _Nodeptr;
struct _Node {
_Nodeptr _Next, _Prev;
_Ty _Value;
};
struct _Acc;
friend struct _Acc;
struct _Acc {
typedef _REFERENCE_X(_Nodeptr, _A) _Nodepref;
typedef _A::reference _Vref;
static _Nodepref _Next(_Nodeptr _P)
{
return ((_Nodepref)(*_P)._Next); }
static _Nodepref _Prev(_Nodeptr _P)
{
return ((_Nodepref)(*_P)._Prev); }
static _Vref _Value(_Nodeptr _P)
{
return ((_Vref)(*_P)._Value); }
};
public:
typedef list<_Ty, _A> _Myt;
typedef _A allocator_type;
typedef _A::size_type size_type;
typedef _A::difference_type difference_type;
typedef _A::pointer _Tptr;
typedef _A::const_pointer _Ctptr;
typedef _A::reference reference;
typedef _A::const_reference const_reference;
typedef _A::value_type value_type;
class iterator;
class const_iterator;
friend class const_iterator;
class const_iterator : public _Bidit<_Ty, difference_type> {
public:
const_iterator()
{
}
const_iterator(_Nodeptr _P)
: _Ptr(_P) {
}
const_iterator(const iterator& _X)
: _Ptr(_X._Ptr) {
}
const_reference operator*() const
{
return (_Acc::_Value(_Ptr)); }
_Ctptr operator->() const
{
return (&**this); }
const_iterator& operator++()
{
_Ptr = _Acc::_Next(_Ptr);
return (*this); }
const_iterator operator++(int)
{
const_iterator _Tmp = *this;
++*this;
return (_Tmp); }
const_iterator& operator--()
{
_Ptr = _Acc::_Prev(_Ptr);
return (*this); }
const_iterator operator--(int)
{
const_iterator _Tmp = *this;
--*this;
return (_Tmp); }
bool operator==(const const_iterator& _X) const
{
return (_Ptr == _X._Ptr); }
bool operator!=(const const_iterator& _X) const
{
return (!(*this == _X)); }
_Nodeptr _Mynode() const
{
return (_Ptr); }
protected:
_Nodeptr _Ptr;
};
friend class iterator;
class iterator : public const_iterator {
public:
iterator()
{
}
iterator(_Nodeptr _P)
: const_iterator(_P) {
}
reference operator*() const
{
return (_Acc::_Value(_Ptr)); }
_Tptr operator->() const
{
return (&**this); }
iterator& operator++()
{
_Ptr = _Acc::_Next(_Ptr);
return (*this); }
iterator operator++(int)
{
iterator _Tmp = *this;
++*this;
return (_Tmp); }
iterator& operator--()
{
_Ptr = _Acc::_Prev(_Ptr);
return (*this); }
iterator operator--(int)
{
iterator _Tmp = *this;
--*this;
return (_Tmp); }
bool operator==(const iterator& _X) const
{
return (_Ptr == _X._Ptr); }
bool operator!=(const iterator& _X) const
{
return (!(*this == _X)); }
};
typedef reverse_bidirectional_iterator<iterator,
value_type, reference, _Tptr, difference_type>
reverse_iterator;
typedef reverse_bidirectional_iterator<const_iterator,
value_type, const_reference, _Ctptr, difference_type>
const_reverse_iterator;
explicit list(const _A& _Al = _A())
: allocator(_Al),
_Head(_Buynode()), _Size(0) {
}
explicit list(size_type _N, const _Ty& _V = _Ty(),
const _A& _Al = _A())
: allocator(_Al),
_Head(_Buynode()), _Size(0)
{
insert(begin(), _N, _V); }
list(const _Myt& _X)
: allocator(_X.allocator),
_Head(_Buynode()), _Size(0)
{
insert(begin(), _X.begin(), _X.end()); }
list(const _Ty *_F, const _Ty *_L, const _A& _Al = _A())
: allocator(_Al),
_Head(_Buynode()), _Size(0)
{
insert(begin(), _F, _L); }
typedef const_iterator _It;
list(_It _F, _It _L, const _A& _Al = _A())
: allocator(_Al),
_Head(_Buynode()), _Size(0)
{
insert(begin(), _F, _L); }
~list()
{
erase(begin(), end());
_Freenode(_Head);
_Head = 0, _Size = 0; }
_Myt& operator=(const _Myt& _X)
{
if (this != &_X)
{
iterator _F1 = begin();
iterator _L1 = end();
const_iterator _F2 = _X.begin();
const_iterator _L2 = _X.end();
for (; _F1 != _L1 && _F2 != _L2; ++_F1, ++_F2)
*_F1 = *_F2;
erase(_F1, _L1);
insert(_L1, _F2, _L2); }
return (*this); }
iterator begin()
{
return (iterator(_Acc::_Next(_Head))); }
const_iterator begin() const
{
return (const_iterator(_Acc::_Next(_Head))); }
iterator end()
{
return (iterator(_Head)); }
const_iterator end() const
{
return (const_iterator(_Head)); }
reverse_iterator rbegin()
{
return (reverse_iterator(end())); }
const_reverse_iterator rbegin() const
{
return (const_reverse_iterator(end())); }
reverse_iterator rend()
{
return (reverse_iterator(begin())); }
const_reverse_iterator rend() const
{
return (const_reverse_iterator(begin())); }
void resize(size_type _N, _Ty _X = _Ty())
{
if (size() < _N)
insert(end(), _N - size(), _X);
else
while (_N < size())
pop_back(); }
size_type size() const
{
return (_Size); }
size_type max_size() const
{
return (allocator.max_size()); }
bool empty() const
{
return (size() == 0); }
_A get_allocator() const
{
return (allocator); }
reference front()
{
return (*begin()); }
const_reference front() const
{
return (*begin()); }
reference back()
{
return (*(--end())); }
const_reference back() const
{
return (*(--end())); }
void push_front(const _Ty& _X)
{
insert(begin(), _X); }
void pop_front()
{
erase(begin()); }
void push_back(const _Ty& _X)
{
insert(end(), _X); }
void pop_back()
{
erase(--end()); }
void assign(_It _F, _It _L)
{
erase(begin(), end());
insert(begin(), _F, _L); }
void assign(size_type _N, const _Ty& _X = _Ty())
{
erase(begin(), end());
insert(begin(), _N, _X); }
iterator insert(iterator _P, const _Ty& _X = _Ty())
{
_Nodeptr _S = _P._Mynode();
_Acc::_Prev(_S) = _Buynode(_S, _Acc::_Prev(_S));
_S = _Acc::_Prev(_S);
_Acc::_Next(_Acc::_Prev(_S)) = _S;
allocator.construct(&_Acc::_Value(_S), _X);
++_Size;
return (iterator(_S)); }
void insert(iterator _P, size_type _M, const _Ty& _X)
{
for (; 0 < _M; --_M)
insert(_P, _X); }
void insert(iterator _P, const _Ty *_F, const _Ty *_L)
{
for (; _F != _L; ++_F)
insert(_P, *_F); }
void insert(iterator _P, _It _F, _It _L)
{
for (; _F != _L; ++_F)
insert(_P, *_F); }
iterator erase(iterator _P)
{
_Nodeptr _S = (_P++)._Mynode();
_Acc::_Next(_Acc::_Prev(_S)) = _Acc::_Next(_S);
_Acc::_Prev(_Acc::_Next(_S)) = _Acc::_Prev(_S);
allocator.destroy(&_Acc::_Value(_S));
_Freenode(_S);
--_Size;
return (_P); }
iterator erase(iterator _F, iterator _L)
{
while (_F != _L)
erase(_F++);
return (_F); }
void clear()
{
erase(begin(), end()); }
void swap(_Myt& _X)
{
if (allocator == _X.allocator)
{
std::swap(_Head, _X._Head);
std::swap(_Size, _X._Size); }
else
{
iterator _P = begin();
splice(_P, _X);
_X.splice(_X.begin(), *this, _P, end()); }}
friend void swap(_Myt& _X, _Myt& _Y)
{
_X.swap(_Y); }
void splice(iterator _P, _Myt& _X)
{
if (!_X.empty())
{
_Splice(_P, _X, _X.begin(), _X.end());
_Size += _X._Size;
_X._Size = 0; }}
void splice(iterator _P, _Myt& _X, iterator _F)
{
iterator _L = _F;
if (_P != _F && _P != ++_L)
{
_Splice(_P, _X, _F, _L);
++_Size;
--_X._Size; }}
void splice(iterator _P, _Myt& _X, iterator _F, iterator _L)
{
if (_F != _L)
{
if (&_X != this)
{
difference_type _N = 0;
_Distance(_F, _L, _N);
_Size += _N;
_X._Size -= _N; }
_Splice(_P, _X, _F, _L); }}
void remove(const _Ty& _V)
{
iterator _L = end();
for (iterator _F = begin(); _F != _L; )
if (*_F == _V)
erase(_F++);
else
++_F; }
typedef binder2nd<not_equal_to<_Ty> > _Pr1;
void remove_if(_Pr1 _Pr)
{
iterator _L = end();
for (iterator _F = begin(); _F != _L; )
if (_Pr(*_F))
erase(_F++);
else
++_F; }
void unique()
{
iterator _F = begin(), _L = end();
if (_F != _L)
for (iterator _M = _F; ++_M != _L; _M = _F)
if (*_F == *_M)
erase(_M);
else
_F = _M; }
typedef not_equal_to<_Ty> _Pr2;
void unique(_Pr2 _Pr)
{
iterator _F = begin(), _L = end();
if (_F != _L)
for (iterator _M = _F; ++_M != _L; _M = _F)
if (_Pr(*_F, *_M))
erase(_M);
else
_F = _M; }
void merge(_Myt& _X)
{
if (&_X != this)
{
iterator _F1 = begin(), _L1 = end();
iterator _F2 = _X.begin(), _L2 = _X.end();
while (_F1 != _L1 && _F2 != _L2)
if (*_F2 < *_F1)
{
iterator _Mid2 = _F2;
_Splice(_F1, _X, _F2, ++_Mid2);
_F2 = _Mid2; }
else
++_F1;
if (_F2 != _L2)
_Splice(_L1, _X, _F2, _L2);
_Size += _X._Size;
_X._Size = 0; }}
typedef greater<_Ty> _Pr3;
void merge(_Myt& _X, _Pr3 _Pr)
{
if (&_X != this)
{
iterator _F1 = begin(), _L1 = end();
iterator _F2 = _X.begin(), _L2 = _X.end();
while (_F1 != _L1 && _F2 != _L2)
if (_Pr(*_F2, *_F1))
{
iterator _Mid2 = _F2;
_Splice(_F1, _X, _F2, ++_Mid2);
_F2 = _Mid2; }
else
++_F1;
if (_F2 != _L2)
_Splice(_L1, _X, _F2, _L2);
_Size += _X._Size;
_X._Size = 0; }}
void sort()
{
if (2 <= size())
{
const size_t _MAXN = 15;
_Myt _X(allocator), _A[_MAXN + 1];
size_t _N = 0;
while (!empty())
{
_X.splice(_X.begin(), *this, begin());
size_t _I;
for (_I = 0; _I < _N && !_A[_I].empty(); ++_I)
{
_A[_I].merge(_X);
_A[_I].swap(_X); }
if (_I == _MAXN)
_A[_I].merge(_X);
else
{
_A[_I].swap(_X);
if (_I == _N)
++_N; }}
while (0 < _N)
merge(_A[--_N]); }}
void sort(_Pr3 _Pr)
{
if (2 <= size())
{
const size_t _MAXN = 15;
_Myt _X(allocator), _A[_MAXN + 1];
size_t _N = 0;
while (!empty())
{
_X.splice(_X.begin(), *this, begin());
size_t _I;
for (_I = 0; _I < _N && !_A[_I].empty(); ++_I)
{
_A[_I].merge(_X, _Pr);
_A[_I].swap(_X); }
if (_I == _MAXN)
_A[_I].merge(_X, _Pr);
else
{
_A[_I].swap(_X);
if (_I == _N)
++_N; }}
while (0 < _N)
merge(_A[--_N], _Pr); }}
void reverse()
{
if (2 <= size())
{
iterator _L = end();
for (iterator _F = ++begin(); _F != _L; )
{
iterator _M = _F;
_Splice(begin(), *this, _M, ++_F); }}}
protected:
_Nodeptr _Buynode(_Nodeptr _Narg = 0, _Nodeptr _Parg = 0)
{
_Nodeptr _S = (_Nodeptr)allocator._Charalloc(
1 * sizeof (_Node));
_Acc::_Next(_S) = _Narg != 0 ? _Narg : _S;
_Acc::_Prev(_S) = _Parg != 0 ? _Parg : _S;
return (_S); }
void _Freenode(_Nodeptr _S)
{
allocator.deallocate(_S, 1); }
void _Splice(iterator _P, _Myt& _X, iterator _F, iterator _L)
{
if (allocator == _X.allocator)
{
_Acc::_Next(_Acc::_Prev(_L._Mynode())) =
_P._Mynode();
_Acc::_Next(_Acc::_Prev(_F._Mynode())) =
_L._Mynode();
_Acc::_Next(_Acc::_Prev(_P._Mynode())) =
_F._Mynode();
_Nodeptr _S = _Acc::_Prev(_P._Mynode());
_Acc::_Prev(_P._Mynode()) =
_Acc::_Prev(_L._Mynode());
_Acc::_Prev(_L._Mynode()) =
_Acc::_Prev(_F._Mynode());
_Acc::_Prev(_F._Mynode()) = _S; }
else
{
insert(_P, _F, _L);
_X.erase(_F, _L); }}
void _Xran() const
{
_THROW(out_of_range, "invalid list subscript"); }
_A allocator;
_Nodeptr _Head;
size_type _Size;
};
template<class _Ty, class _A> inline
bool operator==(const list<_Ty, _A>& _X,
const list<_Ty, _A>& _Y)
{
return (_X.size() == _Y.size()
&& equal(_X.begin(), _X.end(), _Y.begin())); }
template<class _Ty, class _A> inline
bool operator!=(const list<_Ty, _A>& _X,
const list<_Ty, _A>& _Y)
{
return (!(_X == _Y)); }
template<class _Ty, class _A> inline
bool operator<(const list<_Ty, _A>& _X,
const list<_Ty, _A>& _Y)
{
return (lexicographical_compare(_X.begin(), _X.end(),
_Y.begin(), _Y.end())); }
template<class _Ty, class _A> inline
bool operator>(const list<_Ty, _A>& _X,
const list<_Ty, _A>& _Y)
{
return (_Y < _X); }
template<class _Ty, class _A> inline
bool operator<=(const list<_Ty, _A>& _X,
const list<_Ty, _A>& _Y)
{
return (!(_Y < _X)); }
template<class _Ty, class _A> inline
bool operator>=(const list<_Ty, _A>& _X,
const list<_Ty, _A>& _Y)
{
return (!(_X < _Y)); }
_STD_END
#ifdef _MSC_VER
#pragma pack(pop)
#endif
#endif