- 深度学习-97-大语言模型LLM之基于langchain的实体记忆和知识图谱记忆
皮皮冰燃
深度学习深度学习语言模型langchain
文章目录1内存记忆Memory1.1记忆系统支持的操作1.2记忆的存储1.3记忆的查询2记忆的应用2.1设置环境变量2.2ConversationEntityMemory实体记忆2.3ConversationKGMemory知识图谱记忆2.3.1创建ConversationKGMemory2.3.2创建ConversationChain2.4ConversationBufferWindowMemo
- PyTorch 实战教程:从模型搭建到训练的每一步
AI_小站
pytorch人工智能pythontransformer深度学习大模型LLM
用深度学习搞事情,模型搭建和训练是绕不开的两步。而PyTorch,作为一个“又灵活又好用”的深度学习框架,简直就是写代码的快乐源泉。今天我们就从0到1,实战PyTorch的模型搭建和训练流程。说白了,看完你就能自己搭个神经网络,喂点数据进去,再让它干点活。安装PyTorch要用PyTorch,得先装上它。PyTorch的安装稍微有点讲究,主要是要根据你的硬件选择CPU版本还是GPU版本。基本安装命
- 计算机视觉:卷积核
每天五分钟玩转人工智能
计算机视觉计算机视觉深度学习人工智能机器学习卷积神经网络
本文重点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种深度学习模型,广泛应用于图像识别、自然语言处理、语音识别等领域。在卷积神经网络中,卷积核是网络的核心组件之一。通过不断堆叠卷积层和池化层,可以逐渐提取出更高级别的特征,从而实现更复杂的任务。卷积神经网络中的卷积核可以通过反向传播算法进行训练和优化,使其能够自适应地学习输入数据中的特征。因此,卷积神经网络在图像
- 浅谈人群扩展(lookalike)模型
eso1983
算法
Lookalike主要用于广告或者推荐系统中,找到与种子用户相似的人群。常用的算法应该包括协同过滤、基于标签的相似度计算,还有一些机器学习模型,比如逻辑回归、随机森林,以及深度学习的模型,比如DNN或者Embedding方法。这里简单介绍一下Lookalike人群扩展(相似人群扩展)中常用算法模型的解析,涵盖原理、数学公式、实现步骤、优缺点及适用场景。1.基于标签的相似度匹配原理通过用户标签(兴趣
- 【深度学习】常见模型-生成对抗网络(Generative Adversarial Network, GAN)
IT古董
人工智能深度学习机器学习深度学习生成对抗网络人工智能
生成对抗网络(GenerativeAdversarialNetwork,GAN)是一种深度学习模型框架,由IanGoodfellow等人在2014年提出。GAN由生成器(Generator)和判别器(Discriminator)两个对抗网络组成,通过彼此博弈的方式训练,从而生成与真实数据分布极为相似的高质量数据。GAN在图像生成、文本生成、数据增强等领域中有广泛应用。核心思想GAN的核心是两个神经
- InceptionV1实现猴痘病识别案例
小叮当爱咖啡
计算机视觉人工智能神经网络深度学习
本文为为365天深度学习训练营内部文章原作者:K同学啊InceptionModule是InceptionV1的核心组成单元,提出了卷积层的并行结构,实现了在同一层就可以提取不同的特征为了改善计算量大的问题,使用了1*1的卷积核实现降维操作,以此来减小网络的参数量与计算量1*1卷积核的作用:降低输入特征图的通道数,减小网络的参数量与计算量最后InceptionModule基本由1*1卷积,3*3卷积
- Python 深度学习实战:生成对抗网络
AI天才研究院
深度学习实战AI实战AI大模型企业级应用开发实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍生成对抗网络(GenerativeAdversarialNetwork,GAN)是近年来较火热的深度学习模型之一,其在图像合成、视频生成、文本数据生成等领域均取得了不俗的效果。与传统的机器学习模型不同,GAN可以生成真实有效的数据,无需人工标注数据。它由两部分组成:生成器(Generator)和判别器(Discriminator)。生成器通过学习,根据噪声或随机变量(latentvar
- 【深度学习】常见模型-卷积神经网络(Convolutional Neural Networks, CNN)
IT古董
人工智能深度学习机器学习深度学习cnn人工智能
卷积神经网络(CNN)概念简介卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一种专门用于处理数据具有网格状拓扑结构(如图像、语音)的深度学习模型。它通过卷积操作从输入数据中提取局部特征,并逐层构建更复杂的特征表示,广泛应用于图像分类、目标检测、语音识别等领域。关键组成部分卷积层(ConvolutionalLayer)使用卷积核(滤波器)在输入上滑动,提取局部特征。
- NVIDIA L40s、A10、A40、A100、A6000横评,哪个GPU 更适合 AI 推理任务?
DO_Community
技术科普商业建议人工智能gpu算力DigitalOceanaiAIGC
近年来,随着人工智能技术的发展,特别是深度学习模型的广泛应用,GPU(图形处理单元)作为加速计算的重要硬件,在AI领域扮演着越来越重要的角色。AI推理是指已经训练好的模型对新数据进行预测的过程。与训练阶段相比,推理通常对GPU的要求有所不同,更注重于能效比、延迟以及并发处理能力。本文将从这些角度出发,对比分析NVIDIA的L40s、A10、A40、A100、A6000五款GPU在AI推理任务中的表
- 国内的AI大模型有可能超过ChatGPT吗?
AIWritePaper官方账号
PromptChatGPTAIWritePaperchatgpt人工智能深度学习AI写作AIGC
这是一个非常有前瞻性和现实意义的问题。要回答国内AI是否有可能超过ChatGPT,我们需要从多个方面来分析,包括技术基础、数据资源、应用场景、政策支持以及人才储备等。以下是对这一问题的详细探讨:1.技术基础(1)现状国内AI技术:国内的AI技术发展迅速,尤其在深度学习、自然语言处理(NLP)和计算机视觉等领域已经取得了显著进展。例如,百度的文心一言、阿里的通义千问等大语言模型(LLM)已经在技术上
- mac 通过 Homebrew 安装 git 遇到的问题
cs_dn_Jie
macosgit
问题真多啊!!!解决方式见1./2./3./4./5.remote:Enumeratingobjects:290323,done.remote:Countingobjects:100%(473/473),done.remote:Compressingobjects:100%(253/253),done.error:RPCfailed;curl92HTTP/2stream5wasnotclosedc
- WGAN - 瓦萨斯坦生成对抗网络
池央
生成对抗网络人工智能神经网络
1.背景与问题生成对抗网络(GenerativeAdversarialNetworks,GANs)是由IanGoodfellow等人于2014年提出的一种深度学习模型。它包括两个主要部分:生成器(Generator)和判别器(Discriminator),两者通过对抗训练的方式,彼此不断改进,生成器的目标是生成尽可能“真实”的数据,而判别器的目标是区分生成的数据和真实数据。虽然传统GAN在多个领域
- InternLM: LMDeploy 量化部署进阶实践
dilvx
机器学习
LMDeploy部署模型模型部署是将训练好的深度学习模型在特定环境中运行。欢迎使用LMDeploy,支持市面上主流的格式和算法。大模型缓存推理本章的前半部分主要讲量化,包括KV-Cache量化、权重量化、激活值量化。量化主要是为了节省存储空间,用int4,int8来重新表示fp16,将模型的显存占用控制在200G可接受的范围下。值得注意的是,在transformer架构下,计算的瓶颈主要在显存带宽
- NVIDIA-TensorRT-Python推理
呆呆珝
推理框架python人工智能开发语言
1,前言NVIDIATensorRT进行模型推理的Python实现。TensorRT是一个高性能的深度学习推理优化器和运行时,它能够为深度学习模型提供低延迟和高吞吐量的推理能力。(由于官方文档的使用还是比较简单,也可能自己很菜,参考了别人的文档和自己摸索,写出来这个可以使用的API)2.Python-API推理step1:导入基本库(环境自行配置)#导入TensorRT库importtensorr
- NCNN推理
呆呆珝
推理框架c++人工智能
1.前言ncnn是一个高性能的神经网络前向计算框架,专门针对移动设备和嵌入式设备设计。它由腾讯优图实验室开发,旨在提供高效的神经网络推理能力,特别是在资源受限的环境中,如智能手机和嵌入式系统。ncnn被广泛应用于移动端和嵌入式设备上的各种深度学习应用,包括但不限于:图像分类/目标检测/语义分割/人脸识别/图像生成与处理2.NCNN的CMakeLists.txt编写ncnn的头文件,链接文件,静态链
- 基于深度学习的鸟类识别系统详解(UI界面 + YOLOv10 + 数据集)
2025年数学建模美赛
深度学习uiYOLO人工智能python计算机视觉
引言鸟类识别是计算机视觉领域中一个独具挑战性的任务,尤其是在复杂的自然环境中,识别不同种类的鸟类需要非常强大的模型和丰富的数据集。随着深度学习技术的发展,基于YOLO(YouOnlyLookOnce)系列模型的目标检测系统展现了卓越的性能,特别是在速度和精度上的平衡方面。本博客将详细讲解如何利用YOLOv10模型来构建一个基于深度学习的鸟类识别系统。该系统会结合自定义鸟类数据集,设计一个简洁直观的
- C# OpenCV机器视觉:卡尔曼滤波
pchmi
C#OpenCV机器视觉c#opencv人工智能机器视觉卡尔曼滤波
在一个阳光有些慵懒的午后,阿强像往常一样窝在他那被各种电子元件和乱糟糟电线堆满的实验室里,百无聊赖地翻看着一本本厚重的技术书籍。突然,一阵急促的敲门声打破了平静,阿强趿拉着拖鞋,嘟囔着跑去开门,只见好友二胖火急火燎地冲了进来,手里还挥舞着一个小型无人机模型。“阿强啊,我这新买的无人机出大问题了!”二胖气喘吁吁地说道,额头上豆大的汗珠滚落,“我本来想在公园里拍点酷炫的飞行视频,结果它在空中晃得厉害,
- 智源社区AI周刊:Hinton预测破解大脑机制时间;Gary Marcus批判追捧深度学习风潮;谷歌发布Imagen...
智源社区
机器学习人工智能深度学习编程语言大数据
汇聚每周必看AI观点、研究和各类资源,不错过一条重要资讯!欢迎扫码订阅,获取邮件推送。观点“我们会在未来的五年内破解这些(人脑的)程序......现有的一切人工智能,都是建立在与大脑高层次上所做的事情完全不同的基础上......假设有数十亿的参数,这些神经元间的权重在大量训练实例的基础上去调整,会发生奇妙的事情。大脑是如此,深度学习也是如此。但问题在于,如何获得调整参数的梯度......目前我的信
- 想转行到人工智能领域,我该学什么,怎么学?
张登杰踩
人工智能python
转行到人工智能(AI)领域需要系统的学习和实践,以下是详细的路径建议,涵盖基础知识、技能学习、项目实践和求职准备:一、明确目标和领域方向人工智能领域广泛,建议先了解细分方向(如机器学习、深度学习、计算机视觉、自然语言处理、强化学习等),结合兴趣和职业规划选择切入点。二、构建基础知识1.数学基础线性代数:矩阵运算、特征值、向量空间。微积分:导数、梯度、优化理论。概率与统计:贝叶斯定理、分布、假设检验
- 深度学习-94-大语言模型LLM之基于langchain的链Chain的基础应用和调用方式
皮皮冰燃
深度学习深度学习语言模型langchain
文章目录1Chain链的分类1.1LCELChains(链构造器)1.2LegacyChains(遗留链)2链的基础应用2.1OllamaLLM2.2是否使用chain的对比2.2.1不使用Chain2.2.2使用Chain3链的调用方式3.1通过invoke方法【推荐】3.2通过predict方法3.3通过apply方法3.4通过generate方法4参考附录1Chain链的分类为开发更复杂的应
- Swin-Unet:图像分割领域的强大工具
陈凯韵
Swin-Unet:图像分割领域的强大工具【下载地址】Swin-UnetPyTorch代码仓库本仓库提供了一个基于PyTorch实现的Swin-Unet模型的代码资源。Swin-Unet是一种结合了SwinTransformer和U-Net结构的深度学习模型,适用于图像分割任务。该代码可以帮助研究人员和开发者快速上手并应用Swin-Unet模型进行图像分割实验项目地址:https://gitcod
- 新质生产力与核心竞争力提升
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
新质生产力、人工智能、机器学习、深度学习、算法优化、数据驱动、核心竞争力、数字化转型1.背景介绍在当今数字化时代,科技创新正以惊人的速度推动着社会发展。人工智能(AI)作为科技发展的重要驱动力,正在深刻地改变着生产方式和生活方式。从自动驾驶汽车到智能语音助手,从个性化推荐系统到医疗诊断辅助,AI技术的应用场景日益广泛,为人类社会带来了前所未有的机遇。然而,AI技术的应用并非一帆风顺。如何有效地利用
- 李开复:苹果发布AI应用的未来
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
苹果,AI,应用,未来,深度学习,自然语言处理,计算机视觉1.背景介绍近年来,人工智能(AI)技术取得了飞速发展,并开始渗透到人们生活的方方面面。从智能手机的语音助手到自动驾驶汽车,AI正在改变着我们的世界。作为科技巨头,苹果也积极布局AI领域,并将其融入到其产品和服务中。2017年,苹果发布了其首款AI芯片A11Bionic,并将其应用于iPhoneX等产品。该芯片拥有强大的神经网络处理能力,为
- 打造高效React应用:CSS方案深度解析
大家好,我是长林啊!一个爱好JavaScript、Go、Rust的全栈开发者;致力于终生学习和技术分享。在React以其声明式编程范式和组件化架构,成为了构建用户界面的首选技术之一。然而,随着项目规模的扩大和设计需求的多样化,如何高效地管理CSS样式成为了每个React开发者都需要面对的挑战。本文将从一下三个方面进行介绍,探讨如何在React中应用和管理样式,包括内联样式、CSS类、CSSModu
- 推荐系统的未来发展方向:大模型的主流化
AI天才研究院
计算大数据AI人工智能AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《推荐系统的未来发展方向:大模型的主流化》关键词:推荐系统,大模型,深度学习,人工智能,未来趋势摘要:本文深入探讨了推荐系统的发展历程及其在当前人工智能时代的重要性。重点分析了深度学习在大模型中的应用,探讨了大模型的主流化趋势及其面临的挑战。通过案例研究,展示了大模型在实际推荐系统中的应用效果,并对未来的发展方向进行了展望。目录大纲推荐系统的概述1.1推荐系统的发展历程1.2推荐系统的基本架构深度
- linux 权限的设置与查看 chmod 与 ls -l 等相关命令
drebander
脚本
本文为转载文章出处:http://blog.csdn.net/sinchb/article/details/11746427本文着重介绍与Linux文件权限相关等问题,比如用户与用户组,文件权限,文件默认权限和文件特殊权限等。Linux为什么需要那么多的权限限制呢?其实这些都是为了“安全起见”啊!如果你的Linux系统里存了你给心上人写的情书,或者是某亚洲岛国的动作大片,你总不希望谁都可以翻翻看吧
- 自动驾驶中的虚实迁移学习:降低对真实世界数据的依赖
AI架构设计之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
自动驾驶,迁移学习,虚实环境,数据效率,深度学习,强化学习1.背景介绍自动驾驶技术作为人工智能领域的重要应用之一,其发展离不开海量真实世界驾驶数据。然而,收集和标注真实世界驾驶数据成本高昂,且存在安全隐患。因此,如何降低对真实世界数据的依赖,提高自动驾驶系统的训练效率和安全性,成为一个亟待解决的关键问题。虚实迁移学习(Virtual-to-RealTransferLearning)作为一种新兴的机
- 详细介绍 NVIDIA GeForce RTX 系列,各显卡配置参数(长期更新 - 2024.12)
JiaWen技术圈
人工智能深度学习机器学习gpu算力AIGC人工智能图形渲染
NVIDIAGeForceRTX系列是NVIDIA面向消费级市场的高性能GPU产品线,注重提供高性能的图形处理能力和游戏特性。主要面向游戏玩家和普通用户,同时也被广泛用于深度学习推理和训练等计算密集型任务。主要GPU产品有:50Series、40Series、30Series、20Series、10Series。其主要参数如下:NVIDIAGeForceRTX50Series规格架构:Blackw
- 自动检测和机器审核系统实现
╰つ゛木槿
javaeasyuijavascriptpythonjava自然语言处理
目录一、自动检测和机器审核实现步骤1.文本预处理步骤细节:2.关键词检测步骤细节:3.情感分析与情境理解步骤细节:4.机器学习模型训练步骤细节:5.深度学习模型步骤细节:6.多模态审查步骤细节:7.用户行为分析与违规预测步骤细节:总结二、常用的分词工具1.jieba2.THULAC3.HanLP4.SnowNLP5.LAC(LexicalAnalysisofChinese)6.PyLDAvis(结
- AI需要的基础数学知识
大囚长
机器学习大模型人工智能
AI(人工智能)涉及多个数学领域,以下是主要的基础数学知识:1.线性代数矩阵与向量:用于表示数据和模型参数。矩阵乘法:用于神经网络的前向传播。特征值与特征向量:用于降维和主成分分析(PCA)。奇异值分解(SVD):用于数据压缩和降维。2.微积分导数与偏导数:用于优化算法(如梯度下降)。链式法则:用于反向传播算法。积分:在概率和统计中有应用。3.概率与统计概率分布:如高斯分布、伯努利分布等。贝叶斯定
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息