- Windows 安装 及解决 tvm 无法打开 源 文件 “dmlc/logging.h“
杜波超
windows
如果你在编译TVM时遇到`dmlc/logging.h`文件缺失的问题,很可能是因为在克隆TVM仓库时没有包含其子模块,而这些子模块(如`dmlc-core`)是通过Git管理的。解决步骤安装Git:如果你还没有安装Git,需要先安装它。根据你的操作系统选择合适的安装方法:Ubuntu/Debian:sudoapt-getinstallgitCentOS/Fedora:sudoyuminstall
- tvm交叉编译android opencl
极乐净土0822
androidtvmndk交叉编译opencl
模型编译:#encoding:utf-8importonnximportnumpyasnpimporttvmimporttvm.relayasrelayimportosfromtvm.contribimportndkonnx_model=onnx.load('mobilenet_v3_small.onnx')x=np.ones([1,3,224,224])input_name='input1'sh
- 一篇文章教你从入门到精通 Google 指纹验证功能
vivo互联网技术
本文首发于vivo互联网技术微信公众号链接:https://mp.weixin.qq.com/s/EHomjBy4Tvm8u962J6ZgsA作者:SunDaxiangGoogle从Android6.0开始,提供了开放的指纹识别相关API,通过此篇文章可以帮助开发者接入指纹验证的基础功能,并且提供了系统应用基于指纹验证的功能扩展,如指纹验证登录功能核心流程图和关键代码分析。一、基础篇从Androi
- Vitis AI 集成
人工智能
更多TVM中文文档可访问→ApacheTVM是一个端到端的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。IApacheTVM中文站VitisAI是用在Xilinx平台(包括边缘设备和Alveo卡)上进行硬件加速AI推理的Xilinx开发堆栈。它由优化的IP、工具、库、模型和示例设计组成。在设计时兼顾高效率和易用性,充分发挥了XilinxFPGA和ACAP上AI加速的潜力。TVM中当
- Vitis AI 集成
HyperAI超神经
TVM人工智能TVM
更多TVM中文文档可访问→ApacheTVM是一个端到端的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。IApacheTVM中文站**VitisAI**是用在Xilinx平台(包括边缘设备和Alveo卡)上进行硬件加速AI推理的Xilinx开发堆栈。它由优化的IP、工具、库、模型和示例设计组成。在设计时兼顾高效率和易用性,充分发挥了XilinxFPGA和ACAP上AI加速的潜力。T
- CFA一级前导:: 计算器使用教程1~7 第2+3节
weixin_52505631
CFAI级职场和发展学习方法金融其他笔记
Time-Value-of-MoneyandAmortizationWorksheets货币的时间价值与摊销表00:48:12点击观看1.用TVM功能:equalandregularcash相等且有规律的现金流按[N][I/Y][PV][PMT][FV]中任5个键中的1个已知其中4个变量,才能求出第5个变量TVM功能Variable中文KeyNumberofperiods(N)期数[N]Inter
- Relay Arm® 计算库集成
HyperAI超神经
TVMarm开发
介绍Arm计算库(ACL)是一个开源项目,它为ArmCPU和GPU提供了加速内核。目前,集成将算子迁移到ACL以在库中使用手工制作的汇编程序例程。通过将选择算子从Relay计算图迁移到ACL,可在此类设备上实现性能提升。安装Arm计算库安装Arm计算库前,了解要构建的架构非常重要。一种方法是使用lscpu,并查找CPU的“模型名称”,然后,可以使用它通过在线查看来确定架构。TVM目前只支持v21.
- TVM安装
血_影
ToolsTVM
为什么选择TVM为提升深度学习模型的推理效率,设备平台制造商针对自己的平台推出优化的推理引擎,例如NAVIDA的tensorRT,Intel的OpenVINO,Tencent针对移动端应用推出NCNN等。目前,深度学习模型应用广泛,在服务端和移动端都有应用,甚至于特殊的嵌入式场景想,它们都有加速模型推理的需求。TVM介是从深度学习编译器的角度来做推理引擎,目前技术领域还比较新,具体技术细节以后有机
- 【TEE】PENGLAI TEE
Destiny
可信执行环境TEE可信计算技术安全架构安全risc-v
蓬莱TEE介绍蓬莱TEE论文蓬莱TEE文档蓬莱TEE项目文章目录1简介2PengLai于2021RISC-V中国峰会2.1TEE/enclave有什么用蓬莱TEE3蓬莱文档3.1教程(蓬莱TVM)3.1.1运行飞地程序helloworld3.1.2enclave-enclave和enclave-host之间的IPC3.1.3影子飞地3.1.4服务器enclave3.1.5证明3.1.6enclav
- 机器学习系统或者SysML&DL笔记
AAI机器之心
机器学习笔记人工智能pytorch深度学习python
在使用过TVM、TensorRT等优秀的机器学习编译优化系统以及Pytorch、Keras等深度学习框架后,总觉得有必要从理论上对这些系统进行一些分析,虽然说在实践中学习是最快最直接的(指哪儿打哪儿、不会哪儿查哪儿),但恶补一些关于系统设计的一些知识还是非常有用了,权当是巩固一些基础了。因此,有必要学习了解一下机器学习系统的设计和思想。以下是本系列文章的笔记来源:CSE599W:Systemsfo
- 使用docker镜像快速构建TVM
早睡的叶子
AI编译器docker容器运维
TVMdocekr编译文章目录TVMdocekr编译使用云镜像使用docker进行本地构建使用云镜像下载docker镜像如果对docker指令不熟悉可以查阅:dockercli命令行APITVMdockerhub镜像dockerpulltlcpack/ci-cpu:20230604-060130-0af9ff90e运行containerdockerrun--name2306_tvm_cpu-it-
- 打破硬件壁垒:TVM 助力 AI技术跨平台部署
程序边界
人工智能
文章目录《TVM编译器原理与实践》编辑推荐内容简介作者简介目录前言/序言获取方式随着人工智能(ArtificialIntelligence,AI)在全世界信息产业中的广泛应用,深度学习模型已经成为推动AI技术革命的关键。TensorFlow、PyTorch、MXNet、Caffe等深度学习模型已经在服务器级GPU上取得了显著的成果。然而,大多数现有的系统框架只针对小范围的服务器级GPU进行过优化,
- [zz]TVM之神经网络Auto-Tuning
crazyhank
最近在研究TVM项目,这篇文章值得一读,对于搞神经网络性能优化的同学来说,很有价值:(http://closure11.com/%E5%85%B6%E4%BB%96/2018/12/20/TVM%E4%B9%8BAuto-Tuning/)
- 2024三掌柜赠书活动第一期:TVM编译器原理与实践
三掌柜666
人工智能
目录前言TVM编译器的实现过程关于《TVM编译器原理与实践》编辑推荐内容简介作者简介图书目录书中前言/序言《TVM编译器原理与实践》全书速览结束语前言随着人工智能的发展,计算机视觉、自然语言处理和语音识别等领域的需求不断增加。为了更好地满足这些需求,许多深度学习框架被开发出来,其中TVM(TVirtualMachine)是一种优秀的编译器,能够将深度学习模型编译为高效的机器码。而且TVM编译器的核
- RK3588-TVM-GPU推理模型
呆呆珝
推理框架人工智能linux前端
1.前言之前的博客已经在RK3588上安装了tvm的mali-gpu的版本,我们整理一下思路,本文将从模型的转换和调用两个方面进行讲解,tvm使用的是0.10版本,模型和代码也都是tvm官方的案例。2.onnx模型转换将ONNX格式的ResNet50-v2模型转换为TVMRuntime支持的形式,并将其编译为一个共享库文件。以下是对代码的解释:1.导入库和模块importonnximporttvm
- win10 安装tvm(aarch64进行推理)
SongpingWang
TensorRT/TVMc++python
文章目录准备一、编译llvm二、编译tvm三、测试tvm准备llvm下载:gitclone-bv0.14.0--depth=1--recursivehttp://github.com/apache/tvmtvmtvm下载:https://codeload.github.com/apache/tvm/zip/refs/tags/v0.14.0E:\TVM_LLVM├─llvm-project-llv
- RK3588安装TVM-GPU版本
呆呆珝
推理框架嵌入式硬件opencv目标检测计算机视觉python
1.前言RK3588还有相应的GPU可以使用,我们也可以配置相关的环境,进行GPU的使用2.RK3588的GPU介绍Mali-G610是Arm公司开发的第三代Valhall架构的GPU。它于2022年7月发布,面向中端和高端移动设备。Mali-G610采用Armv9架构,具有10个核心,每个核心都有128个FP32ALU。它还支持FP16、INT8和INT4计算,以及硬件加速的AI功能。Mali-
- RK3588安装TVM-CPU版本
呆呆珝
推理框架人工智能深度学习
1.背景TVM是一个开源的机器学习编译器栈,用于优化和编译深度学习模型,以在各种硬件平台上实现高效性能。以下是关于TVM的详细介绍:TVM的目标是将深度学习模型的优化和编译过程自动化,以便开发人员可以轻松地将其模型部署到各种硬件平台上,包括CPU、GPU、FPGA等。TVM的核心功能包括自动优化、代码生成和硬件抽象。它可以根据硬件平台的特点自动调整模型的计算图,生成高效的代码,并通过硬件抽象层与底
- 探索“超级服务器” TON:SDK 应用与开发入门
TinTin Land
TinTinMeetingweb3TONtelegram
TON是一个由多个组件构成的去中心化和开放的互联网平台,聚焦于实现广泛的跨链互操作性,同时在高可扩展性的安全框架中运作。TON区块链被设计为分布式超级计算机或“超级服务器(superserver)”,旨在提供各种产品和服务,以促进去中心化的发展。从TVM基础到合约开发语言,TON区块链的技术优势与生态发展有何特点?基于TON生态开发的技术工具又将赋予开发者怎样高效、个性的应用体验?第25期TinT
- 将VM放入TVM:Relay虚拟机
zxros10
TVM官方文档翻译人工智能
Relay是一种新的程序表示方法,它实现了大量机器学习程序的表示和优化。不幸的是,在引入支持更有表现力的程序集的同时,我们也引入了一些新的执行上的挑战。Relay的解释器可以执行完整的语言,但是有明显的限制,这使得它不适合生产部署。它被构造成通过遍历AST来执行程序的低效解释器。这种方法在概念上很简单,但效率很低,因为AST遍历严重依赖于间接性。在编译动态代码方面还有更多的挑战,比如动态调度和内存
- TVM(端到端的优化栈)概述
wangbowj123
深度学习深度学习从入门到放弃TVM深度学习GPU优化人工智能
陈天奇团队宣布推出TVM,在微博上表示,「我们今天发布了TVM,和NNVM一起组成深度学习到各种硬件的完整优化工具链,支持手机,cuda,opencl,metal,javascript以及其它各种后端。欢迎对于深度学习,编译原理,高性能计算,硬件加速有兴趣的同学一起加入dmlc推动领导开源项目社区。」大多数现有系统针对窄范围的服务器级GPU进行优化,且需要在包括手机、IOT设备及专用加速器上部署大
- 深度学习模型编译框架TVM概述
Linux基金会AI&Data基金会
算法数据结构大数据编程语言python
★在任意深度学习的应用场景落地一个模型/算法时,需要经历两个基本步骤:1.根据数据生产一个模型的训练步骤;2.将生产出的模型部署到目标设备上执行服务的推理步骤。训练步骤目前基本由Tensorflow、PyTorch、Keras、MXNet等主流框架主导,同样的,推理步骤目前也处在“百家争鸣”的状态。”TVM是什么?TVM是一款开源的、端到端的深度学习模型编译框架,用于优化深度学习模型在CPU、GP
- AI编译器及TVM概述
WRichards
人工智能
AI编译器AI编译器有许多不同的类型和品牌,以下是一些常见的AI编译器:TensorFlow:谷歌开发的深度学习框架,它包含了一个用于优化和编译TensorFlow模型的编译器。PyTorch:一个基于Python的开源深度学习框架,也提供了一个编译器用于执行和优化PyTorch模型。ONNX:开放神经网络交换的标准,它定义了一个中间表示格式,允许不同的深度学习框架之间交换和执行模型。TVM:一个
- TVM Ubuntu20安装
shelgi
框架使用python各种填坑ubuntu人工智能TVMpytorchpython
TVMUbuntu20安装最近和大佬聊天,谈到对于现在项目上部署的一些问题,总觉得各大部署框架对“自家”产品都支持的很好,但是对其他平台可能效果一般.于是聊到通用的部署框架TVM,可能对特定的设备优化不如那些针对“自家”产品优化的好,但是普适性来说还是非常好的,起码很多时候不会因为换了一个硬件平台就得重复编译优化.况且现在TVM还加入了Tensorrt的算子优化,基本上和纯Tensorrt部署性能
- Ubuntu20.04部署TVM流程及编译优化模型示例
Briwisdom
#技术教程linuxllvmclangtvm
前言:记录自己安装TVM的流程,以及一个简单的利用TVM编译模型并执行的示例。1,官网下载TVM源码gitclone--recursivehttps://github.com/apache/tvmgitsubmoduleinitgitsubmoduleupdate顺便完成准备工作,比如升级cmake版本需要3.18及以上版本。还有如下库:sudoapt-getupdatesudoapt-getin
- esp32-s3部署yolox_nano进行目标检测
咚咚锵咚咚锵
模型落地人工智能目标检测嵌入式硬件
ESP32-S3部署yolox_nano进行目标检测一、生成模型部署项目01环境02配置TVM包03模型量化3.1预处理3.2量化04生成项目二、烧录程序手上的是ESP32-S3-WROOM-1N8R8芯片,整个链路跑通了,但是识别速度太慢了,20秒一张图,所以暂时还没打算进一步优化程序。一、生成模型部署项目官方指导文件:使用TVM自动生成模型部署项目先下载onnx模型:yolox_nano.on
- TVM 0.9 在 ubuntu(任意版本)上的安装(简单且保姆级!)
哥谭最性感的下巴
TVMubuntupython深度学习人工智能pytorch
近一年来尝试过TVM在ubuntu16.04、ubuntu18.04、ubuntu20.04以及windows上的安装,也看了官方教程和网上各种博客,踩坑无数,现在总结在Ubuntu上踩坑几率最小的安装流程如下。(建议学习TVM一开始就在ubuntu上进行,windows上TVM从安装到运行都会有意想不到的bug,我曾经遇到过同样的代码在windows上报奇怪的错而在Ubuntu上就不会)以TVM
- Ubuntu20.04上编译安装TVM
ltshan139
TVMTVMCMAKELLVM
本文主要讲述如何在ubuntu20.04平台上编译TVM代码并在python中importtvm成功。源代码下载:gitclone--recursivehttps://github.com/apache/tvmtvm平台环境升级:1)sudoapt-getupdate2)sudoapt-getinstall-ypython3python3-devpython3-setuptoolsgcclibti
- 深度学习AI编译器-TVM简介
WRichards
人工智能深度学习人工智能
1.为什么需要深度学习编译器深度学习编译器主要为解决不同框架下训练的模型部署到指定的某些设备上时所遇到的一系列复杂的问题,即将各种深度学习训练框架的模型部署到各种硬件所面临的问题;首先深度学习领域,从训练框架看,当前可选的框架有pytorch、TensorFlow、Mxnet、paddle,oneflow、caffe/caffe2、mindspore等,具体选择哪个,不尽相同,但如果项目要部署落地
- TVM中tensorflow pb格式模型加载过程学习
编程小猪
1、通过tf将pb模型文件加载后生成GraphDef这里需要注意,目前tvm只支持加载forzon的PB模型。withtf.gfile.FastGFile(FLAGS.frozen_model_path,'rb')asf:graph_def=tf.compat.v1.GraphDef()graph_def.ParseFromString(f.read())graph=tf.import_graph
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb