聊聊flink的EventTime

本文主要研究一下flink的EventTime

SourceFunction

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/functions/source/SourceFunction.java

    /**
     * Interface that source functions use to emit elements, and possibly watermarks.
     *
     * @param  The type of the elements produced by the source.
     */
    @Public // Interface might be extended in the future with additional methods.
    interface SourceContext {

        /**
         * Emits one element from the source, without attaching a timestamp. In most cases,
         * this is the default way of emitting elements.
         *
         * 

The timestamp that the element will get assigned depends on the time characteristic of * the streaming program: *

    *
  • On {@link TimeCharacteristic#ProcessingTime}, the element has no timestamp.
  • *
  • On {@link TimeCharacteristic#IngestionTime}, the element gets the system's * current time as the timestamp.
  • *
  • On {@link TimeCharacteristic#EventTime}, the element will have no timestamp initially. * It needs to get a timestamp (via a {@link TimestampAssigner}) before any time-dependent * operation (like time windows).
  • *
* * @param element The element to emit */ void collect(T element); /** * Emits one element from the source, and attaches the given timestamp. This method * is relevant for programs using {@link TimeCharacteristic#EventTime}, where the * sources assign timestamps themselves, rather than relying on a {@link TimestampAssigner} * on the stream. * *

On certain time characteristics, this timestamp may be ignored or overwritten. * This allows programs to switch between the different time characteristics and behaviors * without changing the code of the source functions. *

    *
  • On {@link TimeCharacteristic#ProcessingTime}, the timestamp will be ignored, * because processing time never works with element timestamps.
  • *
  • On {@link TimeCharacteristic#IngestionTime}, the timestamp is overwritten with the * system's current time, to realize proper ingestion time semantics.
  • *
  • On {@link TimeCharacteristic#EventTime}, the timestamp will be used.
  • *
* * @param element The element to emit * @param timestamp The timestamp in milliseconds since the Epoch */ @PublicEvolving void collectWithTimestamp(T element, long timestamp); /** * Emits the given {@link Watermark}. A Watermark of value {@code t} declares that no * elements with a timestamp {@code t' <= t} will occur any more. If further such * elements will be emitted, those elements are considered late. * *

This method is only relevant when running on {@link TimeCharacteristic#EventTime}. * On {@link TimeCharacteristic#ProcessingTime},Watermarks will be ignored. On * {@link TimeCharacteristic#IngestionTime}, the Watermarks will be replaced by the * automatic ingestion time watermarks. * * @param mark The Watermark to emit */ @PublicEvolving void emitWatermark(Watermark mark); /** * Marks the source to be temporarily idle. This tells the system that this source will * temporarily stop emitting records and watermarks for an indefinite amount of time. This * is only relevant when running on {@link TimeCharacteristic#IngestionTime} and * {@link TimeCharacteristic#EventTime}, allowing downstream tasks to advance their * watermarks without the need to wait for watermarks from this source while it is idle. * *

Source functions should make a best effort to call this method as soon as they * acknowledge themselves to be idle. The system will consider the source to resume activity * again once {@link SourceContext#collect(T)}, {@link SourceContext#collectWithTimestamp(T, long)}, * or {@link SourceContext#emitWatermark(Watermark)} is called to emit elements or watermarks from the source. */ @PublicEvolving void markAsTemporarilyIdle(); /** * Returns the checkpoint lock. Please refer to the class-level comment in * {@link SourceFunction} for details about how to write a consistent checkpointed * source. * * @return The object to use as the lock */ Object getCheckpointLock(); /** * This method is called by the system to shut down the context. */ void close(); }

  • SourceFunction里头定义了SourceContext接口,它里头定义了collectWithTimestamp、emitWatermark方法,前者用来assign event timestamp,后者用来emit watermark

实例

public abstract class TestSource implements SourceFunction {
    private volatile boolean running = true;
    protected Object[] testStream;

    @Override
    public void run(SourceContext ctx) throws Exception {
        for (int i = 0; (i < testStream.length) && running; i++) {
            if (testStream[i] instanceof TaxiRide) {
                TaxiRide ride = (TaxiRide) testStream[i];
                ctx.collectWithTimestamp(ride, ride.getEventTime());
            } else if (testStream[i] instanceof TaxiFare) {
                TaxiFare fare = (TaxiFare) testStream[i];
                ctx.collectWithTimestamp(fare, fare.getEventTime());
            } else if (testStream[i] instanceof String) {
                String s = (String) testStream[i];
                ctx.collectWithTimestamp(s, 0);
            } else if (testStream[i] instanceof Long) {
                Long ts = (Long) testStream[i];
                ctx.emitWatermark(new Watermark(ts));
            } else {
                throw new RuntimeException(testStream[i].toString());
            }
        }
        // test sources are finite, so they have a Long.MAX_VALUE watermark when they finishes
    }

    @Override
    public void cancel() {
        running = false;
    }
}
  • 这里展示了如何在SourceFunction里头来assign timestamp(collectWithTimestamp)以及emit watermark(emitWatermark)

DataStream.assignTimestampsAndWatermarks

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/DataStream.java

    /**
     * Assigns timestamps to the elements in the data stream and periodically creates
     * watermarks to signal event time progress.
     *
     * 

This method creates watermarks periodically (for example every second), based * on the watermarks indicated by the given watermark generator. Even when no new elements * in the stream arrive, the given watermark generator will be periodically checked for * new watermarks. The interval in which watermarks are generated is defined in * {@link ExecutionConfig#setAutoWatermarkInterval(long)}. * *

Use this method for the common cases, where some characteristic over all elements * should generate the watermarks, or where watermarks are simply trailing behind the * wall clock time by a certain amount. * *

For the second case and when the watermarks are required to lag behind the maximum * timestamp seen so far in the elements of the stream by a fixed amount of time, and this * amount is known in advance, use the * {@link BoundedOutOfOrdernessTimestampExtractor}. * *

For cases where watermarks should be created in an irregular fashion, for example * based on certain markers that some element carry, use the * {@link AssignerWithPunctuatedWatermarks}. * * @param timestampAndWatermarkAssigner The implementation of the timestamp assigner and * watermark generator. * @return The stream after the transformation, with assigned timestamps and watermarks. * * @see AssignerWithPeriodicWatermarks * @see AssignerWithPunctuatedWatermarks * @see #assignTimestampsAndWatermarks(AssignerWithPunctuatedWatermarks) */ public SingleOutputStreamOperator assignTimestampsAndWatermarks( AssignerWithPeriodicWatermarks timestampAndWatermarkAssigner) { // match parallelism to input, otherwise dop=1 sources could lead to some strange // behaviour: the watermark will creep along very slowly because the elements // from the source go to each extraction operator round robin. final int inputParallelism = getTransformation().getParallelism(); final AssignerWithPeriodicWatermarks cleanedAssigner = clean(timestampAndWatermarkAssigner); TimestampsAndPeriodicWatermarksOperator operator = new TimestampsAndPeriodicWatermarksOperator<>(cleanedAssigner); return transform("Timestamps/Watermarks", getTransformation().getOutputType(), operator) .setParallelism(inputParallelism); } /** * Assigns timestamps to the elements in the data stream and creates watermarks to * signal event time progress based on the elements themselves. * *

This method creates watermarks based purely on stream elements. For each element * that is handled via {@link AssignerWithPunctuatedWatermarks#extractTimestamp(Object, long)}, * the {@link AssignerWithPunctuatedWatermarks#checkAndGetNextWatermark(Object, long)} * method is called, and a new watermark is emitted, if the returned watermark value is * non-negative and greater than the previous watermark. * *

This method is useful when the data stream embeds watermark elements, or certain elements * carry a marker that can be used to determine the current event time watermark. * This operation gives the programmer full control over the watermark generation. Users * should be aware that too aggressive watermark generation (i.e., generating hundreds of * watermarks every second) can cost some performance. * *

For cases where watermarks should be created in a regular fashion, for example * every x milliseconds, use the {@link AssignerWithPeriodicWatermarks}. * * @param timestampAndWatermarkAssigner The implementation of the timestamp assigner and * watermark generator. * @return The stream after the transformation, with assigned timestamps and watermarks. * * @see AssignerWithPunctuatedWatermarks * @see AssignerWithPeriodicWatermarks * @see #assignTimestampsAndWatermarks(AssignerWithPeriodicWatermarks) */ public SingleOutputStreamOperator assignTimestampsAndWatermarks( AssignerWithPunctuatedWatermarks timestampAndWatermarkAssigner) { // match parallelism to input, otherwise dop=1 sources could lead to some strange // behaviour: the watermark will creep along very slowly because the elements // from the source go to each extraction operator round robin. final int inputParallelism = getTransformation().getParallelism(); final AssignerWithPunctuatedWatermarks cleanedAssigner = clean(timestampAndWatermarkAssigner); TimestampsAndPunctuatedWatermarksOperator operator = new TimestampsAndPunctuatedWatermarksOperator<>(cleanedAssigner); return transform("Timestamps/Watermarks", getTransformation().getOutputType(), operator) .setParallelism(inputParallelism); }

  • DataStream定义了assignTimestampsAndWatermarks方法,用来在source外头设置timestampAndWatermarkAssigner(AssignerWithPeriodicWatermarks或者AssignerWithPunctuatedWatermarks类型),告知flink如何提取eventTime

AssignerWithPeriodicWatermarks

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/functions/AssignerWithPeriodicWatermarks.java

public interface AssignerWithPeriodicWatermarks extends TimestampAssigner {

    /**
     * Returns the current watermark. This method is periodically called by the
     * system to retrieve the current watermark. The method may return {@code null} to
     * indicate that no new Watermark is available.
     *
     * 

The returned watermark will be emitted only if it is non-null and its timestamp * is larger than that of the previously emitted watermark (to preserve the contract of * ascending watermarks). If the current watermark is still * identical to the previous one, no progress in event time has happened since * the previous call to this method. If a null value is returned, or the timestamp * of the returned watermark is smaller than that of the last emitted one, then no * new watermark will be generated. * *

The interval in which this method is called and Watermarks are generated * depends on {@link ExecutionConfig#getAutoWatermarkInterval()}. * * @see org.apache.flink.streaming.api.watermark.Watermark * @see ExecutionConfig#getAutoWatermarkInterval() * * @return {@code Null}, if no watermark should be emitted, or the next watermark to emit. */ @Nullable Watermark getCurrentWatermark(); }

  • AssignerWithPeriodicWatermarks继承了TimestampAssigner接口(定义了extractTimestamp方法),这里定义了getCurrentWatermark方法,该方法会被周期性调用返回current watermark,如果没有的话返回null

AssignerWithPeriodicWatermarks实例

    public static void main(String[] args) throws Exception {

        final int popThreshold = 20; // threshold for popular places

        // set up streaming execution environment
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
        env.getConfig().setAutoWatermarkInterval(1000);

        // configure the Kafka consumer
        Properties kafkaProps = new Properties();
        kafkaProps.setProperty("zookeeper.connect", LOCAL_ZOOKEEPER_HOST);
        kafkaProps.setProperty("bootstrap.servers", LOCAL_KAFKA_BROKER);
        kafkaProps.setProperty("group.id", RIDE_SPEED_GROUP);
        // always read the Kafka topic from the start
        kafkaProps.setProperty("auto.offset.reset", "earliest");

        // create a Kafka consumer
        FlinkKafkaConsumer011 consumer = new FlinkKafkaConsumer011<>(
                "cleansedRides",
                new TaxiRideSchema(),
                kafkaProps);
        // assign a timestamp extractor to the consumer
        consumer.assignTimestampsAndWatermarks(new TaxiRideTSExtractor());

        // create a TaxiRide data stream
        DataStream rides = env.addSource(consumer);

        // find popular places
        DataStream> popularPlaces = rides
                // match ride to grid cell and event type (start or end)
                .map(new GridCellMatcher())
                // partition by cell id and event type
                .keyBy(0, 1)
                // build sliding window
                .timeWindow(Time.minutes(15), Time.minutes(5))
                // count ride events in window
                .apply(new RideCounter())
                // filter by popularity threshold
                .filter((Tuple4 count) -> (count.f3 >= popThreshold))
                // map grid cell to coordinates
                .map(new GridToCoordinates());

        popularPlaces.print();

        // execute the transformation pipeline
        env.execute("Popular Places from Kafka");
    }

    /**
     * Assigns timestamps to TaxiRide records.
     * Watermarks are a fixed time interval behind the max timestamp and are periodically emitted.
     */
    public static class TaxiRideTSExtractor extends BoundedOutOfOrdernessTimestampExtractor {

        public TaxiRideTSExtractor() {
            super(Time.seconds(MAX_EVENT_DELAY));
        }

        @Override
        public long extractTimestamp(TaxiRide ride) {
            if (ride.isStart) {
                return ride.startTime.getMillis();
            }
            else {
                return ride.endTime.getMillis();
            }
        }
    }
  • 这里使用了DataStream的assignTimestampsAndWatermarks方法,设置的timestampAndWatermarkAssigner实现了AssignerWithPeriodicWatermarks接口(BoundedOutOfOrdernessTimestampExtractor实现了AssignerWithPeriodicWatermarks接口);这里通过env.getConfig().setAutoWatermarkInterval(1000)来设置AssignerWithPeriodicWatermarks的间隔

AssignerWithPunctuatedWatermarks

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/functions/AssignerWithPunctuatedWatermarks.java

public interface AssignerWithPunctuatedWatermarks extends TimestampAssigner {

    /**
     * Asks this implementation if it wants to emit a watermark. This method is called right after
     * the {@link #extractTimestamp(Object, long)} method.
     *
     * 

The returned watermark will be emitted only if it is non-null and its timestamp * is larger than that of the previously emitted watermark (to preserve the contract of * ascending watermarks). If a null value is returned, or the timestamp of the returned * watermark is smaller than that of the last emitted one, then no new watermark will * be generated. * *

For an example how to use this method, see the documentation of * {@link AssignerWithPunctuatedWatermarks this class}. * * @return {@code Null}, if no watermark should be emitted, or the next watermark to emit. */ @Nullable Watermark checkAndGetNextWatermark(T lastElement, long extractedTimestamp); }

  • AssignerWithPunctuatedWatermarks接口继承了TimestampAssigner接口(定义了extractTimestamp方法),这里定义了checkAndGetNextWatermark方法,该方法会在extractTimestamp方法执行之后被调用(调用时通过方法参数传递刚获取的extractedTimestamp)

AssignerWithPunctuatedWatermarks实例

public static void main(String[] args) throws Exception {

        // read parameters
        ParameterTool params = ParameterTool.fromArgs(args);
        String input = params.getRequired("input");

        // set up streaming execution environment
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
        env.setParallelism(1);

        // connect to the data file
        DataStream carData = env.readTextFile(input);

        // map to events
        DataStream events = carData
                .map((String line) -> ConnectedCarEvent.fromString(line))
                .assignTimestampsAndWatermarks(new ConnectedCarAssigner());

        // sort events
        events.keyBy((ConnectedCarEvent event) -> event.carId)
                .process(new SortFunction())
                .print();

        env.execute("Sort Connected Car Events");
    }

public class ConnectedCarAssigner implements AssignerWithPunctuatedWatermarks {
    @Override
    public long extractTimestamp(ConnectedCarEvent event, long previousElementTimestamp) {
        return event.timestamp;
    }

    @Override
    public Watermark checkAndGetNextWatermark(ConnectedCarEvent event, long extractedTimestamp) {
        // simply emit a watermark with every event
        return new Watermark(extractedTimestamp - 30000);
    }
}
  • 这里使用了DataStream的assignTimestampsAndWatermarks方法,设置的timestampAndWatermarkAssigner实现了AssignerWithPunctuatedWatermarks接口

小结

  • 使用EventTime的话就需要告知flink每个数据的eventTime从哪里取,这个通常跟generate watermarks操作一起告知flink eventTime;有两种方式,一种是data stream source内部处理,一种是通过timestam assigner/watermark generator(在flink中,timestamp assigners也定义了如何emit watermark,它们使用的是距离1970-01-01T00:00:00Z以来的毫秒数)
  • 在source里头定义的话,即使用SourceFunction里头定义的SourceContext接口的collectWithTimestamp、emitWatermark方法,前者用来assign event timestamp,后者用来emit watermark
  • 在source外头定义的话,就是通过DataStream的assignTimestampsAndWatermarks方法,设置timestampAndWatermarkAssigner;它有两种类型:AssignerWithPeriodicWatermarks(定义了getCurrentWatermark方法,用于返回当前的watermark;periodic间隔参数通过env.getConfig().setAutoWatermarkInterval(1000)来设置);AssignerWithPunctuatedWatermarks(定义了checkAndGetNextWatermark方法,该方法会在extractTimestamp方法执行之后被调用(调用时通过方法参数传递刚获取的extractedTimestamp`)

doc

  • Generating Timestamps / Watermarks

你可能感兴趣的:(聊聊flink的EventTime)