hash冲突及解决方法(平均查找长度?)

一、什么是hash冲突?

假设hash表的大小为9(即有9个槽),现在要把一串数据存到表里:5,28,19,15,20,33,12,17,10

简单计算一下:hash(5)=5, 所以数据5应该放在hash表的第5个槽里;hash(28)=1,所以数据28应该放在hash表的第1个槽里;hash(19)=1,也就是说,数据19也应该放在hash表的第1个槽里——于是就造成了碰撞(也称为冲突,collision)。

二、Hash冲突解决方法:

1.开放定址法(再散列法): 

基本思想:当关键字key的哈希地址p=H(key)出现冲突时,以p为基础,产生另一个哈希地址p1,如果p1仍然冲突,再以p为基础,产生另一个哈希地址p2,…,                            直到找出一个不冲突的哈希地址pi ,将相应元素存入其中。

这种方法有一个通用的再散列函数形式:

Hi=(H(key)+di)% m   i=1,2,…,n

其中H(key)为哈希函数,m 为表长,di称为增量序列。增量序列的取值方式不同,相应的再散列方式也不同。

(1).线性探测再散列:

dii=1,2,3,…,m-1

冲突发生时,顺序查看表中下一单元,直到找出一个空单元或查遍全表。

(2).二次探测再散列: 

di=12,-12,22,-22,…,k2,-k2    ( k<=m/2 )

冲突发生时,在表的左右进行跳跃式探测,比较灵活。

(3).伪随机探测再散列: 

di=伪随机数序列。

具体实现时,应建立一个伪随机数发生器,(如i=(i+p) % m),并给定一个随机数做起点。

4.  示例:

 已知哈希表长度m=11,哈希函数为:H(key)= key  %  11,则H(47)=3,H(26)=4,H(60)=5,假设下一个关键字为69,则H(69)=3,与47冲突。

a): 如果用线性探测再散列处理冲突,下一个哈希地址为H1=(3 + 1)% 11 = 4,仍然冲突,再找下一个哈希地址为H2=(3 + 2)% 11 = 5,还是冲突,

               继续找下一个哈希地址为H3=(3 + 3)% 11 = 6,此时不再冲突,将69填入5号单元。

0     1     2     3     4     5     6     7     8     9     10

47   26   60   69

b): 如果用二次探测再散列处理冲突,下一个哈希地址为H1=(3 + 12)% 11 = 4,仍然冲突,再找下一个哈希地址为H2=(3 - 12)% 11 = 2,此时不再冲突,

               将69填入2号单元。

0     1     2     3     4     5     6     7     8     9     10

69   47   26  60

c): 如果用伪随机探测再散列处理冲突,且伪随机数序列为:2,5,9,……..,则下一个哈希地址为H1=(3 + 2)% 11 = 5,仍然冲突,再找下一个哈希地址

               为H2=(3 + 5)% 11 = 8,此时不再冲突,将69填入8号单元。

0     1     2     3     4     5     6     7     8     9     10

47   26  60                  69

2.再哈希法

这种方法是同时构造多个不同的哈希函数:

Hi=RH1(key) i=1,2,…,k

当哈希地址Hi=RH1(key)发生冲突时,再计算Hi=RH2(key)……,直到冲突不再产生。这种方法不易产生聚集,但增加了计算时间

3.链地址法 (HashMap的冲突处理方式)

这种方法的基本思想是将所有哈希地址为i的元素构成一个称为同义词链的单链表,并将单链表的头指针存在哈希表的第i个单元中,因而查找、插入和删除主要在同义词链中进行。链地址法适用于经常进行插入和删除的情况。

4.建立公共溢出区

这种方法的基本思想是:将哈希表分为基本表和溢出表两部分,凡是和基本表发生冲突的元素,一律填入溢出表。

三、拉链法与开放地址法相比的缺点:

拉链法优点:

拉链法处理冲突简单,且无堆积现象,即非同义词决不会发生冲突,因此平均查找长度较短;

由于拉链法中各链表上的结点空间是动态申请的,故它更适合于造表前无法确定表长的情况

③开放定址法为减少冲突,要求装填因子α较小,故当结点规模较大时会浪费很多空间。而拉链法中可取α≥1,且结点较大时,拉链法中增加的指针域可忽略不计,因此节省空间

在用拉链法构造的散列表中,删除结点的操作易于实现。只要简单地删去链表上相应的结点即可。而对开放地址法构造的散列表,删除结点不能简单地将被删结 点的空间置为空,否则将截断在它之后填人散列表的同义词结点的查找路径。这是因为各种开放地址法中,空地址单元(即开放地址)都是查找失败的条件。因此在 用开放地址法处理冲突的散列表上执行删除操作,只能在被删结点上做删除标记,而不能真正删除结点。

拉链法缺点:

指针需要额外的空间,故当结点规模较小时,开放定址法较为节省空间,而若将节省的指针空间用来扩大散列表的规模,可使装填因子变小,这又减少了开放定址法中的冲突,从而提高平均查找速度。

四、不同处理冲突的平均查找长度

hash冲突及解决方法(平均查找长度?)_第1张图片

例:

假设散列表的长度是13,三列函数为H(K) = k % 13,给定的关键字序列为{32, 14, 23, 01, 42, 20, 45, 27, 55, 24, 10, 53}。分别画出用线性探测法和拉链法解决冲突时构造的哈希表,并求出在等概率情况下,这两种方法的查找成功和查找不成功的平均查找长度。

(1)线性探测法:

hash冲突及解决方法(平均查找长度?)_第2张图片

查找成功时的查找次数等于插入元素时的比较次数,查找成功的平均查找长度为:

ASL = (1+2+1+4+3+1+1+3+9+1+1+3)/12 = 2.5

查找成功时的查找次数:第n个位置不成功时的比较次数为,第n个位置到第1个没有数据位置的距离:如第0个位置取值为1,第1个位置取值为2.

查找不成功的平均查找次数为:

ASL = (1+2+3+4+5+6+7+8+9+10+11+12)/ 13 = 91/13

(2)链地址法

hash冲突及解决方法(平均查找长度?)_第3张图片

查找成功时的平均查找长度:

ASL = (1*6+2*4+3*1+4*1)/12 = 7/4

查找不成功时的平均查找长度:

ASL = (4+2+2+1+2+1)/13

注意:查找成功时,分母为哈希表元素个数,查找不成功时,分母为哈希表长度。

https://blog.csdn.net/u011080472/article/details/51177412

你可能感兴趣的:(hash冲突及解决方法(平均查找长度?))