在桌面创建txt文件并输入:
1 135.0 13.70 12.68 80.32 0.16 16 102.5 17.48 15.13 73.35 0.19
2 130.0 18.09 17.51 83.65 0.26 17 100.0 15.73 14.41 68.75 0.13
3 137.5 13.43 21.73 76.18 0.19 18 97.5 12.16 12.55 61.38 0.15
4 140.0 16.15 16.10 84.09 0.19 19 95.0 13.04 11.15 58.41 0.13
5 142.5 14.67 15.48 81.72 0.16 20 92.5 13.03 14.87 69.55 0.16
6 127.5 10.90 10.76 70.84 0.09 21 90.0 12.40 10.45 59.27 0.14
7 125.0 13.70 12.68 80.32 0.16 22 87.5 15.22 12.03 46.35 0.19
8 122.5 21.49 18.00 78.78 0.28 23 85.0 13.39 11.83 52.41 0.21
9 120.0 15.06 15.70 70.60 0.18 24 82.5 12.53 11.99 52.38 0.16
10 117.5 13.48 14.07 72.60 0.20 25 80.0 16.30 12.33 55.99 0.16
11 115.0 15.28 15.35 79.83 0.22 26 78.0 14.07 12.04 50.66 0.21
12 112.5 15.01 13.84 68.59 0.14 27 75.0 16.50 13.12 61.61 0.11
13 110.0 17.39 16.44 74.59 0.21 28 72.5 18.44 13.54 55.94 0.18
14 107.5 18.03 16.49 77.11 0.19 29 70.0 11.80 11.73 52.75 0.13
代码:
clc ,clear
n=29;m=4;
q=load('/Users/fxalll/Desktop/test.txt');
x=[q(:,1:6);15 105.0 13.75 13.57 79.80 0.14;q(:,7:12);]
y=[x(:,2)];
x1=[x(:,3)];
x2=[x(:,4)];
x3=[x(:,5)];
x4=[x(:,6)];
X=[ones(n,1),x1,x2,x3,x4]
[b,bint,r,rint,s]=regress(y,X);
s2=sum(r.^2)/(n-m-1);
b,bint,s,s2
rcoplot(r,rint)
得到残差图,此时可见第15与第20、22点是异常点,于是删除上述三点,对其进行优化,再次进行回归得到改进后的回归模型的系数、系数置信区间与统计量。
clc ,clear
n=26;m=4;
q=load('/Users/fxalll/Desktop/test.txt');
q(1:4,7:12)
q(6,7:12)
q(8:14,7:12)
q1=[q(1:4,7:12);q(6,7:12);q(8:14,7:12)]
x=[q(:,1:6);q1;]
y=[x(:,2)];
x1=[x(:,3)];
x2=[x(:,4)];
x3=[x(:,5)];
x4=[x(:,6)];
X=[ones(n,1),x1,x2,x3,x4]
[b,bint,r,rint,s]=regress(y,X);
s2=sum(r.^2)/(n-m-1);
b,bint,s,s2
rcoplot(r,rint)