TensorFlow(九)初识卷积神经网络

通过前面的了解 了解到了 神经网络 卷积 与 池化 也基本了解了所有卷积神经网络的重要组成部分

卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),也就是卷积神经网络是前面我们构架的神经网络加上卷积与池化构成的一类新的算法。

 卷积神经网络与普通神经网络的区别在于,卷积神经网络包含了一个由卷积层和子采样层(池化层)构成的特征抽取器。在卷积神经网络的卷积层中,一个神经元只与部分邻层神经元连接。在CNN的一个卷积层中,通常包含若干个特征图(featureMap),每个特征图由一些矩形排列的的神经元组成,同一特征图的神经元共享权值,这里共享的权值就是卷积核。卷积核一般以随机小数矩阵的形式初始化,在网络的训练过程中卷积核将学习得到合理的权值。共享权值(卷积核)带来的直接好处是减少网络各层之间的连接,同时又降低了过拟合的风险。子采样也叫做池化(pooling),通常有均值子采样(mean pooling)和最大值子采样(max pooling)两种形式。子采样可以看作一种特殊的卷积过程。卷积和子采样大大简化了模型复杂度,减少了模型的参数。

而LeNet 诞生于 1994 年,是最早的卷积神经网络之一,并且推动了深度学习领域的发展。自从 1988 年开始,在许多次成功的迭代后,这项由 Yann LeCun 完成的开拓性成果被命名为 LeNet5。LeNet5 的架构基于这样的观点:(尤其是)图像的特征分布在整张图像上,以及带有可学习参数的卷积是一种用少量参数在多个位置上提取相似特征的有效方式。在那时候,没有 GPU 帮助训练,甚至 CPU 的速度也很慢。因此,能够保存参数以及计算过程是一个关键进展。这和将每个像素用作一个大型多层神经网络的单独输入相反。LeNet5 阐述了那些像素不应该被使用在第一层,因为图像具有很强的空间相关性,而使用图像中独立的像素作为不同的输入特征则利用不到这些相关性。

 

卷积神经网络构成

1.输入层。输入层是整个神经网络的输入,在处理图像的卷积神经网络中,它一般代表了一张图片的像素矩阵。比如在图6-7中,最左侧的三维矩阵的长和宽代表了图像的大小,而三维矩阵的深度代表了图像的色彩通道(channel)。比如黑白图片的深度为1,而在RGB色彩模式下,图像的深度为3。从输入层开始,卷积神经网络通过不同的神经网络结构下将上一层的三维矩阵转化为下一层的三维矩阵转化为下一层的三维矩阵,直到最后的全连接层。

2.卷积层。从名字就可以看出,卷积层是一个卷积神经网络中最重要的部分。和传统全连接层不同,卷积层中的每一个节点的输入只是上一层神经网络中的一小块,这个小块的大小有3*3或者5*5。卷积层试图将神经网络中的每一个小块进行更加深入的分析从而得到抽象程度更高的特征。一般来说,通过卷积层处理的节点矩阵会变得更深,所以图6-7中可以看到经过卷积层之后的节点矩阵的深度会增加。

3.池化层。池化层神经网络不会改变三维矩阵的深度,但是它可以缩小矩阵的大小。池化操作可以认为是将一张分辨率较高的图片转化为分辨率较低的图片。通过池化层,可以进一步缩小最后全连接层中节点的个数,从而达到减少整个神经网络中的参数的目的。

4.全连接层。如图6-7所示,在经过多轮卷积层和池化层处理之后,在卷积神经网络的最后一般会由1到2个全连接 层来给出最后的分类结果。经过几轮的卷积层和池化层的处理之后,可以认为图像中的信息已被抽象成了信息含量更高的特征。我们可以将卷积层和池化层看成自动图像特征提取的过程。在特征提取完成之后,仍然需要使用全连接层来完成分类任务。

5.Softmax层。Softmax层主要用于分类问题。经过Softmax层,可以得到当前样例中属于不同种类的概率分布情况。

 

                                       TensorFlow(九)初识卷积神经网络_第1张图片

                                                                 识别手写体卷积神经网络示意图

一. 理解卷积和子采样

        TensorFlow(九)初识卷积神经网络_第2张图片

卷积过程:用一个可训练的滤波器fx去卷积一个输入的图像(第一阶段是输入的图像,后面的阶段就是卷积特征map),然后加一个偏置bx,得到卷积层Cx;

子采样过程:邻域四个像素求和变为一个像素,然后通过标量W加权,再增加偏置b,然后通过一个sigmoid激活函数,产生一个缩小四倍的特征映射图Sx+1

二. 理解用卷积代替全连接

 

                                 TensorFlow(九)初识卷积神经网络_第3张图片

三. 通过基本的神经元模型理解可训练参数与连接数

                                          TensorFlow(九)初识卷积神经网络_第4张图片

你可能感兴趣的:(TensorFlow与深度学习,智能算法)