import cv2 import numpy as np # 均值哈希算法 def aHash(img): # 缩放为8*8 img = cv2.resize(img, (8, 8)) # 转换为灰度图 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # s为像素和初值为0,hash_str为hash值初值为'' s = 0 hash_str = '' # 遍历累加求像素和 for i in range(8): for j in range(8): s = s + gray[i, j] # 求平均灰度 avg = s / 64 # 灰度大于平均值为1相反为0生成图片的hash值 for i in range(8): for j in range(8): if gray[i, j] > avg: hash_str = hash_str + '1' else: hash_str = hash_str + '0' return hash_str # 差值感知算法 def dHash(img): img = cv2.resize(img, (9, 8)) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) hash_str = '' # 每行前一个像素大于后一个像素为1,相反为0,生成哈希 for i in range(8): for j in range(8): if gray[i, j] > gray[i, j + 1]: hash_str = hash_str + '1' else: hash_str = hash_str + '0' return hash_str # 感知哈希算法(pHash) def pHash(img): img = cv2.resize(img, (32, 32)) # , interpolation=cv2.INTER_CUBIC gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 将灰度图转为浮点型,再进行dct变换 dct = cv2.dct(np.float32(gray)) # opencv实现的掩码操作 dct_roi = dct[0:8, 0:8] hash = [] avreage = np.mean(dct_roi) for i in range(dct_roi.shape[0]): for j in range(dct_roi.shape[1]): if dct_roi[i, j] > avreage: hash.append(1) else: hash.append(0) return hash # Hash值对比 def cmpHash(hash1, hash2): n = 0 # hash长度不同则返回-1代表传参出错 if len(hash1)!=len(hash2): return -1 # 遍历判断 for i in range(len(hash1)): # 不相等则n计数+1,n最终为相似度 if hash1[i] != hash2[i]: n = n + 1 return n import os if __name__ == '__main__': directory_name = 'part' for name in os.listdir(r""+directory_name): name = directory_name+''+name for name2 in os.listdir(r""+directory_name): name2 = directory_name+''+name2 img1 = cv2.imread(name) img2 = cv2.imread(name2) hash1 = aHash(img1) hash2 = aHash(img2) n = cmpHash(hash1, hash2) # print('均值哈希算法相似度:', n) hash1 = dHash(img1) hash2 = dHash(img2) n = cmpHash(hash1, hash2) # print('差值哈希算法相似度:', n) hash1 = pHash(img1) hash2 = pHash(img2) n = cmpHash(hash1, hash2) if(n<=5): if(name != name2): print(name) print(name2) # os.remove(name2) # print('感知哈希算法相似度:', n)
import os import cv2 import shutil from skimage.metrics import structural_similarity def delete(filename1): os.remove(filename1) def yidong(filename1,filename2): shutil.move(filename1,filename2) if __name__ == '__main__': path = r'202102/' img_path = path imgs_n = [] num = [] img_files = [os.path.join(rootdir, file) for rootdir, _, files in os.walk(path) for file in files if (file.endswith('.jpg'))] for currIndex, filename in enumerate(img_files): if not os.path.exists(img_files[currIndex]): print('not exist', img_files[currIndex]) break img = cv2.imread(img_files[currIndex]) img1 = cv2.imread(img_files[currIndex + 1]) img = cv2.resize(img,(46,46),interpolation=cv2.INTER_CUBIC) img1 = cv2.resize(img1,(46,46),interpolation=cv2.INTER_CUBIC) ssim = structural_similarity(img, img1, multichannel=True) if ssim > 0.3: imgs_n.append(img_files[currIndex + 1]) print(img_files[currIndex], img_files[currIndex + 1], ssim) currIndex += 1 if currIndex >= len(img_files)-1: break