大数据系统架构及技术体系介绍详细文档

作者:玩世不恭
邮箱:[email protected]
一、数据采集
1、日志采集系统
(1)、Flume:Flume最早是Cloudera提供的日志收集系统,目前是Apache下的一个孵化项目,是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。
(2)、Scribe:Scribe是Facebook开源的日志收集系统,在Facebook内部已经得到的应用。它能够从各种日志源上收集日志,存储到一个中央存储系统(可以是NFS,分布式文件系统等)上,以便于进行集中统计分析处理。它为日志的“分布式收集,统一处理”提供了一个可扩展的,高容错的方案。当中央存储系统的网络或者机器出现故障时,scribe会将日志转存到本地或者另一个位置,当中央存储系统恢复后,scribe会将转存的日志重新传输给中央存储系统。其通常与Hadoop结合使用,scribe用于向HDFS中push日志,而Hadoop通过MapReduce作业进行定期处理。
(3)、Logstash:Logstash是一个具有实时管道功能的开源数据收集引擎,Logstash可以动态地将来自不同数据源的数据统一起来,并将数据规范化为你选择的目的地,清理和大众化你的所有数据,数据从源传输到存储库的过程中,Logstash 过滤器能够解析各个事件,识别已命名的字段以构建结构,并将它们转换成通用格式,以便更轻松、更快速地分析和实现商业价值,用于各种高级下游分析和可视化用例。
2、数据库采集系统
(1)、Sqoop:Sqoop是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql…)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。类似于其他ETL工具,Sqoop使用元数据模型来判断数据类型并在数据从数据源转移到Hadoop时确保类型安全的数据处理。Sqoop专为大数据批量传输设计,能够分割数据集并创建Hadoop任务来处理每个区块。
3、网络数据采集系统
(1)、Scrapy:Scrapy是用纯Python实现一个为了爬取网站数据、提取结构性数据而编写的应用框架,用途非常广泛。用户只需要定制开发几个模块就可以轻松的实现一个爬虫,用来抓取网页内容以及各种图片,非常之方便。Scrapy 使用了 Twisted异步网络框架来处理网络通讯,可以加快我们的下载速度,不用自己去实现异步框架,并且包含了各种中间件接口,可以灵活的完成各种需求。
(2)Import.io:该工具是一款无需客户端的抓取工具,一切工作在浏览器中即可进行,操作便捷简单,爬取数据后可在可视化界面对其进行筛选。
(3)、Parsehub:这款工具需要下载客户端进行操作,该工具打开后类似一个浏览器,输入网址后便可进行数据提取,支持Windows、MacOS、Linux操作系统。
(4)Web Scraper:一款基于Chrome浏览器的插件,可以直接通过谷歌应用商店免费获取并安装,可以轻松抓取静态网页和js动态加载网页。
4、其他数据采集方法
对于企业生产经营数据上的客户数据,财务数据等保密性要求较高的数据,可以通过与数据技术服务商合作,使用特定系统接口等相关方式采集数据。比如八度云计算的数企BDSaaS,无论是数据采集技术、BI数据分析,还是数据的安全性和保密性,都做得很好。
二、数据存储
(1)、HDFS:HDFS(Hadoop Distributed File System),作为Google File System(GFS)的实现,是Hadoop项目的核心子项目,是分布式计算中数据存储管理的基础,是基于流数据模式访问和处理超大文件的需求而开发的,可以运行于廉价的商用服务器上。它所具有的高容错、高可靠性、高可扩展性、高获得性、高吞吐率等特征为海量数据提供了不怕故障的存储,为超大数据集(Large Data Set)的应用处理带来了很多便利。
(2)、Hbase:HBase是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力。HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。
(3)、MongoDB:MongoDB是一个基于分布式文件存储的数据库。由C++语言编写。旨在为WEB应用提供可扩展的高性能数据存储解决方案。是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型。Mongo最大的特点是它支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。
(4)、Neo4j:Neo4j是一个高性能的,NOSQL图形数据库,它将结构化数据存储在网络上而不是表中。它是一个嵌入式的、基于磁盘的、具备完全的事务特性的Java持久化引擎,但是它将结构化数据存储在网络(从数学角度叫做图)上而不是表中。Neo4j也可以被看作是一个高性能的图引擎,该引擎具有成熟数据库的所有特性。程序员工作在一个面向对象的、灵活的网络结构下而不是严格、静态的表中——但是他们可以享受到具备完全的事务特性、企业级的数据库的所有好处。
(5)、JanusGraph:JanusGraph是一个图数据库引擎。JanusGraph专注于压缩的图序列化,丰富的图数据建模和高效的查询执行。此外,JanusGraph利用Hadoop进行图分析和批图处理。JanusGraph为数据持久性,数据索引和客户端访问实现了强大的模块化接口。JanusGraph的模块化架构使其能够与各种存储,索引和客户端技术进行互操作;它还简化了扩展JanusGraph以支持新的过程。
三、计算模型
(1)、批处理框架 MapReduce: MapReduce是一个用于大规模数据(大于1TB)处理的分布式计算模型、编程模型,它最初是由Google设计并实现的,在Google提出时,给它的定义是:Map/Reduce是一个编程模型(programming model),是一个用于处理和生成大规模数据集(processing and generating large data sets)的相关的实现。MapReduce的主要思想“Map(映射)”和“Reduce(规约)”都来自于函数式编程语言。MapReduce极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统之上。用户只需要定义一个map函数来处理一个key/value对以生成一批中间的key/value对,再定义一个reduce函数将所有这些中间的有着相同key的values合并起来。很多现实世界中的任务都可用这个模型来表达,具有较强的实用价值。
(2)、流处理框架Storm:在Storm中, 先要设计一个用于实时计算的图状结构,我们称之为拓扑(topology)。这个拓扑将会被提交给集群,由集群中的主控节点(master node)分发代码,将任务分配给工作节点(worker node)执行。一个拓扑中包括spout和bolt两种角色,其中spout发送消息,负责将数据流以tuple元组的形式发送出去;而bolt则负责转换这些数据流,在bolt中可以完成计算、过滤等操作,bolt自身也可以随机将数据发送给其他bolt。由spout发射出的tuple是不可变数组,对应着固定的键值对。
(3)、流处理框架Samza:Samza是由LinkedIn开源的一项技术,它是一个分布式流处理框架,它是基于Kafka消息队列来实现类实时的流式数据处理的,非常像Twitter的流处理系统Storm。不同的是Samza基于Hadoop,而且使用了LinkedIn自家的Kafka分布式消息系统,并使用资源管理器Apache Hadoop YARN实现容错处理、处理器隔离、安全性和资源管理。
(4)、混合框架Spark:Spark是一种包含流处理能力的下一代批处理框架。与Hadoop的MapReduce引擎基于各种相同原则开发而来的Spark主要侧重于通过完善的内存计算和处理优化机制加快批处理工作负载的运行速度。Spark可作为独立集群部署(需要相应存储层的配合),或可与Hadoop集成并取代MapReduce引擎。
(5)混合框架Flink:Flink是一种可以处理批处理任务的流处理框架。该技术可将批处理数据视作具备有限边界的数据流,借此将批处理任务作为流处理的子集加以处理。为所有处理任务采取流处理为先的方法会产生一系列有趣的副作用。这种流处理为先的方法也叫做Kappa架构,与之相对的是更加被广为人知的Lambda架构(该架构中使用批处理作为主要处理方法,使用流作为补充并提供早期未经提炼的结果)。Kappa架构中会对一切进行流处理,借此对模型进行简化,而这一切是在最近流处理引擎逐渐成熟后才可行的。
四、资源管理
(1)、Yarn(集中式调度器):YARN是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而MapReduce等运算程序则相当于运行于操作系统之上的应用程序。Yarn是Hadoop2.x版本中的一个新特性。它的出现其实是为了解决第一代MapReduce编程框架的不足,提高集群环境下的资源利用率,这些资源包括内存,CPU等。Hadoop2.x版本中重新设计的这个Yarn集群,具有更好的扩展性,可用性,可靠性,向后兼容性,以及能支持除MapReduce以外的更多分布式计算程序。
(2)、Mesos(双层调度器):Mesos由一个master进程和framework组成,master进程管理运行在集群节点上的slave daemon,framework是在这些slave节点上运行任务的计算框架(注:可以看作是Hadoop、Spark、Storm、MPI等计算框架)。master通过对计算框架提供资源,实现细粒度的资源分享。提供的资源为多个slave节点上的空闲资源(注:如CPU、内存、磁盘等)。master根据调度策略,如公平调度和优先级方式,来决定对每个计算框架提供多少资源使用。为了支持框架之间的分配策略多元化,Mesos通过插件式的分配模块,让组织者定义他们自己的(资源调度)策略。
(3)、Kubernetes(k8s)(共享状态调度器):是一个全新的基于容器技术的分布式架构领先方案。Kubernetes(k8s)是Google开源的容器集群管理系统(谷歌内部:Borg)。在Docker技术的基础上,为容器化的应用提供部署运行、资源调度、服务发现和动态伸缩等一系列完整功能,提高了大规模容器集群管理的便捷性。Kubernetes是一个完备的分布式系统支撑平台,具有完备的集群管理能力,多扩多层次的安全防护和准入机制、多租户应用支撑能力、透明的服务注册和发现机制、內建智能负载均衡器、强大的故障发现和自我修复能力、服务滚动升级和在线扩容能力、可扩展的资源自动调度机制以及多粒度的资源配额管理能力。同时Kubernetes提供完善的管理工具,涵盖了包括开发、部署测试、运维监控在内的各个环节
五、环境支撑
(1)、Hue:Hue是一个开源的Apache Hadoop UI系统,由Cloudera Desktop演化而来,最后Cloudera公司将其贡献给Apache基金会的Hadoop社区,它是基于Python Web框架Django实现的。通过使用Hue我们可以在浏览器端的Web控制台上与Hadoop集群进行交互来分析处理数据,例如操作HDFS上的数据,运行MapReduce Job,执行Hive的SQL语句,浏览HBase数据库等等。
(2)、Zeppelin:Apache Zeppelin提供了web版的类似ipython的notebook,用于做数据分析和可视化。背后可以接入不同的数据处理引擎,包括spark, hive, tajo等,原生支持scala, java, shell, markdown等。它的整体展现和使用形式和Databricks Cloud是一样的,就是来自于当时的demo。
(3)、Jupyter Notebook:Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本,支持运行 40 多种编程语言。Jupyter Notebook 的本质是一个 Web 应用程序,便于创建和共享文学化程序文档,支持实时代码,数学方程,可视化和 markdown。 用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等。
六、数据交互
(1)、Redis:Redis是当前比较热门的NOSQL系统之一,它是一个开源的使用ANSI c语言编写的key-value存储系统(区别于MySQL的二维表格的形式存储。)。和Memcache类似,但很大程度补偿了Memcache的不足。和Memcache一样,Redis数据都是缓存在计算机内存中,不同的是,Memcache只能将数据缓存到内存中,无法自动定期写入硬盘,这就表示,一断电或重启,内存清空,数据丢失。所以Memcache的应用场景适用于缓存无需持久化的数据。而Redis不同的是它会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,实现数据的持久化
(2)、Kafka:Apache Kafka由著名职业社交公司LinkedIn开发,最初是被设计用来解决LinkedIn公司内部海量日志传输等问题。Kafka使用Scala语言编写,于2011年开源并进入Apache孵化器,现在为Apache顶级项目。本它提供了发布和订阅功能,使用者可以发送数据到Kafka中,也可以从Kafka中读取数据(以便进行后续的处理)。Kafka具有高吞吐、低延迟、高容错等特点。

你可能感兴趣的:(大数据,hadoop,spark,大数据)