深度学习中的数据处理 - 数据集的建立

在深度学习的模型构建过程中数据集的重要性不言而喻,其建立过程包括以下几点:

  • 数据读入和借助可视化工具辅助数据分析

  • 根据基本的分析结果对特征数据进行选择,舍弃不重要的特征

  • 对于类别数据进行 独热编码或映射

  • 数据特征的标准化和数据集的划分

在前面几个项目的学习中对于不同的数据来源,其实际的处理过程各有差异,在此对几个经典的例子放在一起进行一个对比和总结。

本笔记所示代码源自 Udacity Deep Learning Nano Degree,版权归属于 Udacity,Jupyter notebook 完整代码请见 我的 GihHub 。

Data processing example from student admission project

In [1]:

# Importing pandas and numpy
import pandas as pd
import numpy as np

# Reading the csv file into a pandas DataFrame
data = pd.read_csv('student_data.csv')

# Printing out the first 3 rows of our data
data[:3]

Out[1]:

    admit   gre gpa rank
0   0       380 3.61    3
1   1       660 3.67    3
2   1       800 4.00    1

In [2]:

# Importing matplotlib
import matplotlib.pyplot as plt

# Function to help us plot
def plot_points(data):
    X = np.array(data[['gre','gpa']])
    y = np.array(data['admit'])
    admitted = X[np.argwhere(y==1)]
    rejected = X[np.argwhere(y==0)]
    plt.scatter([s[0][0] for s in rejected], [s[0][1] for s in rejected], s = 25, color = 'red', edgecolor = 'k')
    plt.scatter([s[0][0] for s in admitted], [s[0][1] for s in admitted], s = 25, color = 'cyan', edgecolor = 'k')
    plt.xlabel('Test (GRE)')
    plt.ylabel('Grades (GPA)')

# Plotting the points
plot_points(data)
plt.show()
深度学习中的数据处理 - 数据集的建立_第1张图片
Student admission
In [3]:

# Make dummy variables for rank
one_hot_data = pd.concat([data, pd.get_dummies(data['rank'], prefix='rank')], axis=1)

# Drop the previous rank column
one_hot_data = one_hot_data.drop('rank', axis=1)

# Print the first 3 rows of our data
one_hot_data[:3]

Out[3]:

    admit   gre gpa rank_1  rank_2  rank_3  rank_4
0   0       380 3.61    0   0       1       0
1   1       660 3.67    0   0       1       0
2   1       800 4.00    1   0       0       0

In [4]:

# Scaling the data
processed_data = one_hot_data[:]

# Scaling the columns
processed_data['gre'] = processed_data['gre'] / 800
processed_data['gpa'] = processed_data['gpa'] / 4.0
processed_data[:3]


Out[4]:
    admit   gre     gpa     rank_1  rank_2  rank_3  rank_4
0   0       0.475   0.9025  0       0       1       0
1   1       0.825   0.9175  0       0       1       0
2   1       1.000   1.0000  1       0       0       0

In [5]:

# choose the data randomly
sample = np.random.choice(processed_data.index, size=int(len(processed_data)*0.9), replace=False)
train_data, test_data = processed_data.iloc[sample], processed_data.drop(sample)

print("Number of training samples is", len(train_data))
print("Number of testing samples is", len(test_data))
print(train_data[:3])
print(test_data[:3])

Out [5]:

Number of training samples is 360
Number of testing samples is 40
     admit  gre     gpa  rank_1  rank_2  rank_3  rank_4
302      1  0.5  0.7875       0       1       0       0
121      1  0.6  0.6675       0       1       0       0
249      0  0.8  0.9325       0       0       1       0
    admit    gre     gpa  rank_1  rank_2  rank_3  rank_4
3       1  0.800  0.7975       0       0       0       1
12      1  0.950  1.0000       1       0       0       0
13      0  0.875  0.7700       0       1       0       0


In [6]:

import keras

# Separate data and one-hot encode the output
# Note: We're also turning the data into numpy arrays, in order to train the model in Keras
# use keras.utils.to_categorical to one-hot encoding targets
features = np.array(train_data.drop('admit', axis=1))
targets = np.array(keras.utils.to_categorical(train_data['admit'], 2))
features_test = np.array(test_data.drop('admit', axis=1))
targets_test = np.array(keras.utils.to_categorical(test_data['admit'], 2))

print(features[:3])
print(targets[:3])

[[ 0.5     0.7875  0.      1.      0.      0.    ]
 [ 0.6     0.6675  0.      1.      0.      0.    ]
 [ 0.8     0.9325  0.      0.      1.      0.    ]]
[[ 0.  1.]
 [ 0.  1.]
 [ 1.  0.]]

Data processing example from bike rental project

In [7]:

%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt


In [8]:

data_path = 'Bike-Sharing-Dataset/hour.csv'
rides = pd.read_csv(data_path)


In [9]:

# check to see what style is available in your current working environment
plt.style.available

Out[9]:

['seaborn-deep',
 'seaborn-talk',
 'seaborn-paper',
 'bmh',
 'grayscale',
 'seaborn-bright',
 'seaborn-colorblind',
 'ggplot',
 'seaborn-notebook',
 'seaborn-muted',
 'dark_background',
 'seaborn-dark-palette',
 'seaborn-white',
 'seaborn-darkgrid',
 'classic',
 'seaborn-poster',
 'seaborn-pastel',
 'fivethirtyeight',
 'seaborn-ticks',
 '_classic_test',
 'seaborn-whitegrid',
 'seaborn-dark',
 'seaborn']

In [10]:

# choose the style you like
plt.style.use('ggplot')

fig, ax = plt.subplots(nrows=1, ncols=1) # add this line to take control of the figure configuration later
rides[:24 * 10].plot(x='dteday', y='cnt', ax=ax, figsize=(10, 5)) #set ax=ax to take control of the figure
ax.legend().set_visible(False)
ax.set(title='Rental counts in the first 10 days', ylabel='Rental Counts', xlabel='Date'); 
# this very semicolon stop plt printing out working messages
深度学习中的数据处理 - 数据集的建立_第2张图片
Bike rental
In [11]:

# this demonstrates how you can one-hot encoding more than one column using pandas
dummy_fields = ['season', 'weathersit', 'mnth', 'hr', 'weekday']
for each in dummy_fields:
    dummies = pd.get_dummies(rides[each], prefix=each, drop_first=False)
    rides = pd.concat([rides, dummies], axis=1)

fields_to_drop = ['instant', 'dteday', 'season', 'weathersit', 
                  'weekday', 'atemp', 'mnth', 'workingday', 'hr']
data = rides.drop(fields_to_drop, axis=1)

In [12]:

# scaling the data with standard values
quant_features = ['casual', 'registered', 'cnt', 'temp', 'hum', 'windspeed']
# Store scalings in a dictionary so we can convert back later
scaled_features = {}
for each in quant_features:
    mean, std = data[each].mean(), data[each].std()
    scaled_features[each] = [mean, std]
    data[each] = (data[each] - mean) / std 
    # this line should be write this way for simplicity's sake

In [13]:

# Save data for approximately the last 21 days 
test_data = data[-21*24:]

# Now remove the test data from the data set 
data = data[:-21*24]

# Separate the data into features and targets
target_fields = ['cnt', 'casual', 'registered']
features, targets = data.drop(target_fields, axis=1), data[target_fields]
test_features, test_targets = test_data.drop(target_fields, axis=1), test_data[target_fields]


In [14]:

# Hold out the last 60 days or so of the remaining data as a validation set
train_features, train_targets = features[:-60*24], targets[:-60*24]
val_features, val_targets = features[-60*24:], targets[-60*24:]

你可能感兴趣的:(深度学习中的数据处理 - 数据集的建立)