- 个人学习笔记7-6:动手学深度学习pytorch版-李沐
浪子L
深度学习深度学习笔记计算机视觉python人工智能神经网络pytorch
#人工智能##深度学习##语义分割##计算机视觉##神经网络#计算机视觉13.11全卷积网络全卷积网络(fullyconvolutionalnetwork,FCN)采用卷积神经网络实现了从图像像素到像素类别的变换。引入l转置卷积(transposedconvolution)实现的,输出的类别预测与输入图像在像素级别上具有一一对应关系:通道维的输出即该位置对应像素的类别预测。13.11.1构造模型下
- 第二天 寻找了三篇深度学习综述(深度学习,目标检测,图像分割)
kim_ed33
##################ImageSegmentationUsingDeepLearning:ASurvey本文梳理了172篇相关文献。本文全面回顾了撰写本文时候的文献。包括但不限于全卷积像素标记网络(FCN),编码器-解码器体系结构,多尺度以及基于金字塔的方法,递归网络,视觉注意模型和对抗环境中的生成模型;从最早的方法(阈值化,K均值聚类,分水岭)到后来(随机场,细数方法一类的)再到
- 实例分割论文阅读之:FCN:《Fully Convolutional Networks for Semantica Segmentation》
交换喜悲
mdetection系列论文阅读目标检测人工智能实例分割计算机视觉卷积神经网络
论文地址:https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf代码链接:https://github.com/pytorch/vision摘要卷积网络是强大的视觉模型,可以产生特征层次结构。我们证明,经过端到端、像素到像素训练的卷积网络
- 深度学习知识点汇总-目标检测(1)
深度学习模型优化
8.1R-FCNR-FCN属于two-stage的目标检测算法。backbone部分RPN,这里使用ResNet。head部分R-FCN,使用全连接网络。其中ResNet-101+R-FCN的方法在PASCALVOC2007测试数据集的mmAP达到83.6%。图1人脸检测R-FCN的核心思想得到目标多个特征。假设我们只有一个特征图用来检测右眼。那么我们可以使用它定位人脸吗?应该可以。因为右眼应该在
- 语义分割系列之FCN、DeeplabV1、V2、V3、V3Plus论文学习
Diros1g
学习深度学习计算机视觉
FCNFullyConvolutionalNetworks论文:FullyConvolutionalNetworksforSemanticSegmentation地址:https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf特点:用全卷积替
- 「竞赛调研」GeoLifeCLEF 2022 x FGVC9 - 任务及解决方案
Sternstunden
竞赛计算机视觉机器学习人工智能
任务说明本次竞赛的目标是预测植物和动物物种的地理分布,比赛方提供了来自法国和美国的1.6M个地理定位的观测数据,涵盖17K个物种(其中9K个为植物物种,8K个为动物物种)。解决方案rank1-SensioTeam总体概述团队集成了3个模型:1.一个双模态网络。团队使用Nir+G+B,在预训练的resnet34上,将其最后一层堆叠到一个3层FCN(包含环境向量+纬度+经度+国家+海拔平均值+最大-最
- 语义分割:从早期探索到深度学习的突破
kadog
ByGPT深度学习人工智能笔记python
语义分割:从早期探索到深度学习的突破语义分割的端倪:从早期探索到深度学习的突破引言早期技术:图像处理与模式识别边缘检测区域生长图割(GraphCut)聚类方法深度学习的兴起:CNN革命2012年AlexNet的突破全卷积网络(FCN)U-Net的创新设计深度学习卷积网络技术不断创新发展里程碑:端到端学习端到端全卷积网络(FCN)MaskR-CNN的多任务学习Transformer在视觉任务中的应用
- 深入理解DeepLab系列语义分割网络
深蓝学院
深度学习计算机视觉大数据人工智能语义分割深度学习计算机视觉
语义分割是指在像素级别上进行分类,从而转换得到感兴趣区域的掩膜。说起语义分割的发展则肯定绕不开DeepLab系列语义分割网络,该系列网络由谷歌团队提出并发展,在VOC2012等公用语义分割数据集上,取得了较好的效果。1.DeepLabV1DeepLabV1[1]于2014年提出,在PASCALVOC2012数据集上取得了分割任务第二名的成绩。该网络是研究FCN之后发现在FCN中池化层会使得特征图的
- opencv调取摄像头一个简单的实例
郭庆汝
opencv计算机视觉人工智能
opencv调取摄像头一个简单的实例#coding:utf-8#In[1]:importsysfromdetection.MtcnnDetectorimportMtcnnDetectorfromdetection.detectorimportDetectorfromdetection.fcn_detectorimportFcnDetectorfromtrain.modelimportP_Net,R
- simulink信号线出现问号的话
想暴富,学技术
matlab
1、可以用display接信号线,看看是不是值为NaN,这样是测不出维度是多少的,因为是无效值。2、看一看是不是积分器代入初值的时候,维数不对应,比如明明是五维向量,代入了一个4维的初值,程序肯定报错的3、有的时候用Fcn产生一个列向量,会出现未知错误,建议用constant,然后输入一个列向量4、ctrl+D刷新一下5、function的输出通道有可能会报“无法识别输出数据的类型”,这个时候就要
- FCN全卷积网络Fully Convolutional Networks
踩坑第某人
语义分割CNN实现语义分割FCN实现语义分割全连接层注:以下内容摘自知乎全连接层(fullyconnectedlayers,FC)在整个卷积神经网络中起到“分类器”的作用。如果说卷积层、池化层和激活函数层等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的“分布式特征表示”映射到样本标记空间的作用。在实际使用中,全连接层和卷积层可实现相互转换。参数冗余。通过研究发现,在包含全连接的网络
- Unet系列网络解析
TechMasterPlus
图像分割计算机视觉人工智能深度学习
UnetUNet最早发表在2015的MICCAI上,到2020年中旬的引用量已经超过了9700多次,估计现在都过万了,从这方面看足以见得其影响力。当然,UNet这个基本的网络结构有太多的改进型,应用范围已经远远超出了医学图像的范畴。我们先从最原始的UNet网络模型开始讲解。1、UNet网络结构 开始时,UNet主要应用在医学图像的分割,并且快速成为大多做医学图像语义分割任务的baseline
- 2、 前馈和反馈神经网络
爱补鱼的猫猫
深度学习笔记神经网络深度学习cnn
前馈和反馈神经网络神经网络分类一、CNN**1、结构****2、应用****3、CNN的类型综述**二、RNN**1、结构****2、应用****3、RNN类型**三、GAN**1、结构****2、应用****3、GAN类型**四、FCN五、ResNet六、反向传播BP和BPTT神经网络分类1、前馈神经网络:全连接神经网络(DNN)、卷积神经网络(CNN)、全卷积神经网络(FCN)、残差网络(Re
- 2024-01-04 学习笔记
qq_19986067
学习笔记
1.语义分割中的lossfunction最全面汇总摘要这篇文章主要讨论了在图像语义分割任务中常用的几种损失函数,包括交叉熵损失、加权损失、焦点损失和Dicesoft损失。交叉熵损失是最常用的损失函数之一,用于比较每个像素的类别预测结果与标签向量,特别适用于多类别预测。加权损失用于解决类别不均衡的问题,通过对正负样本的损失赋予不同的权重来平衡样本分布。焦点损失则进一步关注难学习的样本,通过修改二元交
- 大创项目推荐 深度学习实现语义分割算法系统 - 机器视觉
laafeer
python
文章目录1前言2概念介绍2.1什么是图像语义分割3条件随机场的深度学习模型3\.1多尺度特征融合4语义分割开发过程4.1建立4.2下载CamVid数据集4.3加载CamVid图像4.4加载CamVid像素标签图像5PyTorch实现语义分割5.1数据集准备5.2训练基准模型5.3损失函数5.4归一化层5.5数据增强5.6实现效果6最后1前言优质竞赛项目系列,今天要分享的是基于深度学习实现语义分割算
- 语义分割:U-Net、UNet++、U2Net的联系和区别
xifenglie123321
计算机视觉人工智能深度学习
U-Net、UNet++、U2Net都是基于U-Net网络结构的改进版本,主要用于图像语义分割任务。U-Net是一种经典的图像语义分割网络,它由一个编码器和一个解码器组成,其中编码器用于提取图像特征,解码器用于将特征图还原为原始图像大小的分割结果。U-Net的特点是具有较强的特征提取能力和较高的分割精度,但在处理细节信息时可能存在一定的局限性。UNet++是对U-Net的改进,它通过增加多个分支和
- 类比 C 冒泡排序,从 ctrgcn.py 看神经网络模型代码
一杯水果茶!
视觉与网络c语言神经网络代码逻辑
代码展示StepsStep1.importStep2.辅助2.1辅助函数2.2辅助类Step3.modelStep4.main扩展神经网络模型中的class具体怎么定义`classFCN(nn.Module)``def__init__(self,input_size,hidden_size,output_size)``super(FCN,self).__init__()``forward(self
- fcn网络训练代码_利用FCN-8s网络训练自己数据集(NYUD为例)
斯为成树
fcn网络训练代码
Papers:FullyConvolutionalModelsforSemanticSegmentationEvanShelhamer*,JonathanLong*,TrevorDarrellPAMI2016arXiv:1605.06211FullyConvolutionalModelsforSemanticSegmentationJonathanLong*,EvanShelhamer*,Trev
- 1、FCN_TensorFlow——VGG16_FCN8s构造代码分析
袁振国
首先,感谢MarvinTeichmann分享的KittiSeg代码,源码见其GitHub主页先贴一张全连接的VGG16模型,如图1:图11、全卷积神经网络(FCN)是在图1的基础上,将全连接层改为卷积替代并将其用于语义分割上,详情见论文《FullyConvolutionalNetworksforSemanticSegmentation》图2将全连接层修改为卷积层使得分类网络的输出变为一个热点图图3
- CAFFE -FCN训练配置过程
visionshop
深度学习
转载自http://blog.csdn.net/jiongnima/article/details/78549326?locationNum=3&fps=1在2015年发表于计算机视觉顶会CVPR上的FullyConvolutionalNetworksforSemanticSegmentation论文(下文中简称FCN)开创了图像语义分割的新流派。在后来的科研工作者发表学术论文做实验的时候,还常常
- 语义分割学习笔记(三)FCN网络结构详解
向岸看
深度学习-语义分割深度学习FCN网络语义分割
推荐课程:FCN网络结构详解(语义分割)_哔哩哔哩_bilibili感谢博主霹雳吧啦Wz/太阳花的小绿豆提供视频讲解和源码支持,真乃神人也!目录1.FCN网络概述2.几种不同的FCN网络(1)FCN-32s(2)FCN-16s(3)FCN-8s3.损失计算1.FCN网络概述FCN网络(FullyConvolutionalNetworks):首个端对端的针对像素级预测的全卷积网络。FCN网络思想:输
- FCN-8s源码理解
hzhj
深度学习人工智能
FCN网络用于对图像进行分割,由于是全卷积网络,所以对输入图像的分辨率没有要求。本文重点对fcn8s.py中图像降采样和上采样后图像分辨率的变换进行理解。相关知识为准确理解图像分辨率的变换,对网络结构中影响图像分辨率变换的几个函数进行简单回顾nn.Conv2d的参数详见这里,其输入和输出之间的关系如下,其中dilation默认为1.nn.MaxPool2d的参数详见这里,其输入和输出之间的关系如下
- FCN学习-----第一课
湘溶溶
分割深度学习学习深度学习人工智能python
语义分割中的全卷积网络CVPRIEEE国际计算机视觉与模式识别会议PAMIIEEE模式分析与机器智能汇刊需要会的知识点:神经网络:前向传播和反向传播卷积神经网络:CNN,卷积,池化,上采样分类网络:VGG,net,AlexNet,GoogLeNetPytorch基础必须学会:熟练掌握语义分割常识知识:概念、术语、应用(0.5)熟练掌握FCN算法模型:结构、意义、补充知识点(1天)熟练掌握FCN模型
- FCN——第二课
湘溶溶
分割深度学习深度学习人工智能学习python
语义分割中的全卷积网络语义分割中的全卷积网络一、引言和相关工作二、全卷积网络三、论文算法模型详解四、论文算法模型细节五、实验设置和结果分析六、讨论和总结一、引言和相关工作在以往的分割方法中,主要有两大类缺点:1.基于图像块的分割虽然常见,但是效率低,且往往需要前期或者后期处理(例如超像素、检测框局部预分类等)2.语义分割面临着语义和位置信息不可兼得的问题。全局信息解决的“是什么”,而局部信息解决的
- U-Net网络结构解析和代码解析
norah2
计算机视觉深度学习目标检测
U-Net网络结构详解在语义分割领域,基于深度学习的语义分割算法开山之作是FCN(FullyConvolutionalNetworksforSemanticSegmentation),而U-Net是遵循FCN的原理,并进行了相应的改进,使其适应小样本的简单分割问题。U-Net网络在医疗影像领域的应用十分广泛,成为了大多数医疗影像语义分割任务的baseline,同时基于U-Net网络改进网络也纷纷出
- 第二十六周:学习笔记
@默然
学习笔记
第二十六周:学习笔记摘要Abstract全卷积网络FCN1.CNN与FCN2.全连接层-->成卷积层3.FCN的缺点摘要全卷积神经网络(FullyConvolutionalNetwork,FCN)是一种用于图像分割和语义分割任务的深度学习模型。与传统的卷积神经网络(ConvolutionalNeuralNetworks,CNN)不同,FCN中的全卷积层(FullyConvolutionalLaye
- YOLOv5算法进阶改进(9)— 引入ASPP | 空洞空间金字塔池化
小哥谈
YOLOv5:从入门到实战YOLO人工智能计算机视觉目标检测深度学习机器学习
前言:Hello大家好,我是小哥谈。ASPP是空洞空间金字塔池化(AtrousSpatialPyramidPooling)的缩写。它是一种用于图像语义分割任务的特征提取方法。ASPP通过在不同尺度上进行空洞卷积操作,从而捕捉到图像中不同尺度的上下文信息。ASPP的主要思想是在输入特征图上应用多个不同采样率的空洞卷积,然后将这些特征图进行池化和融合,最后输出一个具有丰富上下文信息的特征图。前期回顾:
- Python遥感影像深度学习指南(3)-卫星图像语义分割之用PyTorch创建一个简单的U-Net 模型
gis收藏家
Python数据处理python深度学习pytorch
在上一篇文章中,介绍了如何在不使用torchvision模块的情况下,创建卫星图像的多通道数据集。现在,我们将继续创建一个简单的深度学习模型,用于卫星图像的语义分割。1、介绍下图来自"卷积神经网络实现了从高分辨率无人机图像中高效、准确、精细地分割植物物种和群落"的论文,我们要创建的U-Net模型与其类似,其中我们有3个压缩块contractingblocks和3个上采样块(也叫扩展块)upsamp
- python环境运行FCN遇到的若干问题
melody723
pythonFCNtensorflow机器学习
win10系统,python3.5运行GitHub中经典算法FCN,tensorflow版本0.12代码链接:https://github.com/shekkizh/FCN.tensorflow1、Cannotfeedvalueofshape(0,)forTensor'input_image:0',whichhasshape'(?,224,224,3)']解决:删除Data_zoo\MIT_Sce
- 图像分割网络FCN详解与代码实现
金戈鐡馬
深度学习网络深度学习计算机视觉人工智能神经网络
全卷积网络(FCN):卷积神经网络从图像分类到到对象检测、实例分割、到图像语义分割、是卷积特征提取从粗糙输出到精炼输出的不断升级,基于卷积神经网络的全卷积分割网络FCN是像素级别的图像语义分割网络,相比以前传统的图像分割方法,基于卷积神经网络的分割更加的精准,适应性更强。上图是FCN网络像素级别的预测,支持每个像素点20个类别预测,多出来的一个类别是背景。要把一个正常的图像分类网络,转换为一个全卷
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round