Hbase二级索引_Hive on Hbase 及phoenix详解

文章目录

  • Hbase二级索引_Hive on Hbase 及phoenix详解
    • 知识点02:课程目标
    • 知识点03:SQL on Hbase
    • 知识点04:Hive on Hbase 介绍
    • 知识点05:Hive on Hbase 配置
    • 知识点06:Hive on Hbase 实现
    • 知识点07:二级索引问题
    • 知识点08:Phoenix的介绍
    • 知识点09:Phoenix的安装配置
    • 知识点10:Phoenix的语法:DDL:NS
    • 知识点11:Phoenix的语法:DDL:Table
    • 知识点12:Phoenix的语法:DML:upsert
    • 知识点13:Phoenix的语法:DML:delete
    • 知识点14:Phoenix的语法:DQL:select
    • 知识点15:Phoenix的使用:预分区
    • 知识点16:Phoenix的使用:加盐salt
    • 知识点17:Phoenix的使用:视图
    • 知识点18:Phoenix的使用:JDBC

Hbase二级索引_Hive on Hbase 及phoenix详解

知识点02:课程目标

  1. SQL on Hbase
    • 使用SQL语句来操作Hbase
      • Hbase不支持SQL接口
    • 额外的工具来实现
  2. Hive on Hbase【了解】
    • 使用Hive中的SQL语句来实现对Hbase数据的操作
    • 本质:通过MapReduce来实现读写Hbase
  3. Phoenix【重点】
    • 专门为Hbase所设计的一个工具
    • 本质:直接封装Hbase的JavaAPI来实现的
    • 功能、应用场景、基本原理、特点
    • 基本使用:语法【upsert、delete、select】

知识点03:SQL on Hbase

  • 问题

    • Hbase是列存储NoSQL,不支持SQL,开发接口不方便大部分用户使用,怎么办?
  • 分析

    • 应用场景:应用系统或者大数据存储系统

      • 大数据存储系统:大数据工程师

        • 利用Hbase来存储大量要分析处理的数据
        • 使用JavaAPI通过MapReduce或者通过Spark来实现数据的读写
          • Java
          • Scala
      • 应用系统:Java工程师、数据分析师

        • 利用Hbase来存储大量的商品数据、订单数据,来提供高性能的查询
      • 问题:Java人员不会Hbase Java API,对于数据库会JDBC

      • 解决:需要一个工具能让Hbase支持SQL,支持JDBC方式对Hbase进行处理

    • Hbase的结构是否能实现基于SQL的查询操作?

      • 普通表数据:按行操作

        id		name		age		sex		addr
        001		zhangsan	18		null	shanghai
        002		lisi		20		female	null
        003		wangwu		null	male	beijing
        ……
        
      • Hbase数据:按列操作

        rowkey			cf1:id		cf1:name		cf1:age		cf2:sex		cf2:addr
        zhangsan_001	001			zhangsan		18			null		shanghai
        lisi_002		002			lisi			20			female		null
        wangwu_003		003			wangwu			null		male		beijing
        ……
        
    • 可以基于Hbase数据构建结构化的数据形式

    • 可以用SQL来实现处理

  • 实现

    • 将Hbase表中每一行对应的所有列构建一张完整的结构化表
    • 如果这一行没有这一列,就补null
    • Hive:通过MapReduce来实现
    • Phoenix:通过Hbase API封装实现的
  • 总结

    • 原因:满足各种应用场景下,对于Hbase使用的方式,基于SQL方式会更加通用
    • 实现:将整张表的数据构建结构化形式,每一行没有列就补null
    • 原理:将SQL转换成了Hbase的客户端操作来实现的

知识点04:Hive on Hbase 介绍

  • 功能:实现Hive与Hbase集成,使用Hive SQL对Hbase的数据进行处理

  • 原理

    • Hive的功能:使用HQL对表的数据进行处理

      • 本质:通过MapReduce对HDFS中的文件进行处理

      • 原理

        • TextInputFormat:读文件

        • TextOutputFormat:写文件

    • MapReduce的功能:读取数据进行分布式计算

      • InputFormat:输入类

        • TextInputFormat:默认的输入类,用于读取文件系统
        • DBInputFormat:用于读取JDBC数据库
          • 实现Sqoop导入的:将MySQL数据导入到Hive或者HDFS
        • TableInputFormat:用于读取Hbase数据
      • OutputFormat:输出类

        • TextOutputFormat:默认的输出类,用于将结果写入文件系统

        • DBOutputFormat:用于写入JDBC数据库

          • 实现Sqoop导出的:将HDFS数据写入MySQL
        • TableOutputFormat:用于写入HBase数据库

    • 原理:Hive可以通过MapReduce来实现映射读写Hbase表的数据

  • 特点

    • 优点:支持完善的SQL语句,可以实现各种复杂SQL的数据处理及计算,通过分布式计算程序实现,对大数据量的数据处理比较友好

    • 缺点:不支持二级索引,数据量不是特别大的情况下,性能一般

  • 应用

    • 基于大数据高性能的离线读写,并且使用SQL来开发

知识点05:Hive on Hbase 配置

  • 需求

    • 配置Hive与Hbase集成,实现Hive中可以读写Hbase表
  • 分析

    • step1:修改Hive配置文件,指定Hbase的Zookeeper地址
    • step2:按顺序启动HDFS、ZK、Hbase、Hive
  • 实现

    • 全部操作在第三台机器

    • 修改hive-site.xml:Hive通过SQL访问Hbase,就是Hbase的客户端,就要连接zookeeper

      cd /export/server/hive-2.1.0-bin/
      vim conf/hive-site.xml
      
      <property>
      	<name>hive.zookeeper.quorumname>
      	<value>node1,node2,node3value>
      property>
       <property>
      	<name>hbase.zookeeper.quorumname>
      	<value>node1,node2,node3value>
      property>
      <property>
          <name>hive.server2.enable.doAsname>
          <value>falsevalue>
      property>
      
    • 修改hive-env.sh

      export HBASE_HOME=/export/server/hbase-2.1.0
      
    • 启动HDFS、ZK、Hbase:第一台机器

      start-dfs.sh
      /export/server/zookeeper-3.4.6/bin/start-zk-all.sh
      start-hbase.sh
      
    • 启动Hive和YARN:第三台机器

      #启动YARN
      start-yarn.sh
      #先启动metastore服务
      start-metastore.sh 
      #然后启动hiveserver
      start-hiveserver2.sh
      #然后启动beeline
      start-beeline.sh
      
  • 总结

    • 先配置Hive的配置文件:添加Hbase的地址
    • 然后按照先后顺序启动即可

知识点06:Hive on Hbase 实现

  • 需求

    • 在Hive中实现对Hbase表的数据读写
  • 分析

    • step1:如果表在Hbase中没有,Hive中没有,在Hive中创建表,指定在Hbase中创建关联表
      • 场景比较少
      • 在Hive中建一张表,自动在Hbase中也创建一张对应的表
    • step2:如果表在Hbase中有,但是Hive中没有,Hive中创建一张外部表,关联Hbase表
      • 主要应用的方式
      • Hbase中的表已经存在,已经有数据,构建一张Hive关联表,使用SQL进行查询
  • 实现

    • 第三台机器测试

    • 如果Hbase中表不存在:【用的比较少】

      • 创建测试数据文件

        vim /export/data/hive-hbase.txt
        1,zhangsan,80
        2,lisi,60
        3,wangwu,30
        4,zhaoliu,70
        
      • 创建测试表

        --创建测试数据库
        create database course;
        --切换数据库
        use course;
        --创建原始数据表
        create external table if not exists course.score(
        id int,
        cname string,
        score int
        ) row format delimited fields terminated by ',' stored as textfile ;
        --加载数据文件
        load data local inpath '/export/data/hive-hbase.txt' into table score;
        
      • 创建一张Hive与HBASE的映射表

        create table course.hbase_score(
        id int,
        cname string,
        score int
        )  
        stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'  
        with serdeproperties("hbase.columns.mapping" = "cf:name,cf:score") 
        tblproperties("hbase.table.name" = "hbase_score");
        
      • 将测试表的数据写入映射表

         set hive.exec.mode.local.auto=true;
         insert overwrite table course.hbase_score select id,cname,score from course.score;
        
    • 如果Hbase中表已存在,只能创建外部表

        create external table course.t1(
        key string,
        name string,
        age  string,
        addr string,
        phone string
        )  
        stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'  
        with serdeproperties("hbase.columns.mapping" = ":key,basic:name,basic:age,other:addr,other:phone") 
        tblproperties("hbase.table.name" = "itcast:t1");
      

      [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gNcVCpdb-1616545523608)(20210323_分布式NoSQL列存储数据库Hbase(六).assets/image-20210323160741636.png)]

  • 总结

    • Hive中的只是关联表,并没有数据,数据存储在Hbase表中
  • 在Hive中创建Hbase的关联表,关联成功后,使用SQL处理关联表

    • 如果Hbase中表不存在,默认使用Hive的第一列作为rowkey
    • 如果Hbase中表已存在,只能建外部表,使用:key来表示rowkey
    • HIve中与Hbase关联的表,不能使用load加载,只能使用insert,通过MR读写数据

知识点07:二级索引问题

  • 问题

    • Hbase使用Rowkey作为唯一索引,需要构建二级索引来解决查询问题,如何构建二级索引以及维护索引表?
  • 分析

    • step1:基于存储和常用查询需求,构建数据表

    • step2:基于其他查询需求,构建索引表

    • step3:先查询索引表,再查询数据表

    • step4:自动维护索引表与原始数据表的数据一致性

  • 实现

    • 构建数据表

      rowkey:name_id			id			name			age			sex			addr
      zhangsan_001			001			zhangsan		18			male		shanghai
      lisi_002				002			lisi			18			female		beijing
      zhangsan_003			003			zhangsan		20			male		
      ……
      
    • 构建索引表

      rowkey:id_name			col:原始数据表的rowkey
      001_zhangsan			zhangsan_001
      002_lisi				lisi_002
      003_zhangsan			zhangsan_003
      ……
      
    • 查询:根据id查询

      • 先查询索引表,获取原表的Rowkey
      • 再根据原表Rowkey查询原表的数据
    • 维护

      • 当原表数据需要进行增删改时,索引表自动进行同步增删改对应的数据,保持一致性
    • 解决方案

      • 方案一:客户端操作实现

        put1
        put2
        table1.put(put1)
        table2.put(put2)
        
      • 方案二:协处理器实现

        • 自己开发代码
        • 让Hbase监听原表,原表更改一条,Hbase自动对索引表更改一条
        • 缺点:开发比较麻烦
      • 方案三:第三方工具

        • Phoenix:将所有协处理器都封装好了

          • 支持SQL

          • 支持自动二级索引的构建及维护

            create index 
            
  • 总结

    • 需求:必须根据不同的查询条件,创建不同的索引表,并且维护所有索引表与原始数据表的同步
    • 解决:通过Phoenix自带的协处理器来实现

知识点08:Phoenix的介绍

  • 功能

    • 专门基于Hbase所设计的SQL on Hbase 工具

    • 使用Phoenix实现基于SQL操作Hbase

    • 使用Phoenix自动构建二级索引并维护二级索引

  • 原理

    • 上层提供了SQL接口

      • 底层全部通过Hbase Java API来实现,通过构建一系列的Scan和Put来实现数据的读写
    • 功能非常丰富

      • 底层封装了大量的内置的协处理器,可以实现各种复杂的处理需求,例如二级索引等
  • 特点

    • 优点
      • 支持SQL接口
      • 支持自动维护二级索引
    • 缺点
      • SQL支持的语法不全面
      • Bug比较多
    • Hive on Hbase对比
      • Hive:SQL更加全面,但是不支持二级索引,底层通过分布式计算工具来实现
      • Phoenix:SQL相对支持不全面,但是性能比较好,直接使用HbaseAPI,支持索引实现
  • 应用

    • Phoenix适用于任何需要使用SQL或者JDBC来快速的读写Hbase的场景

    • 或者需要构建及维护二级索引场景

知识点09:Phoenix的安装配置

  • 需求

    • http://phoenix.apache.org/
    • 安装部署配置Phoenix,集成Hbase
  • 分析

    • step1:上传解压安装
    • step2:修改配置,指定Hbase连接地址
    • step3:启动Phoenix,连接Hbase
  • 实现

    • 下载:http://phoenix.apache.org/download.html

    • 第一台机器上传

      cd /export/software/
      rz
      
    • 第一台机器解压

      tar -zxvf apache-phoenix-5.0.0-HBase-2.0-bin.tar.gz -C /export/server/
      cd /export/server/
      mv apache-phoenix-5.0.0-HBase-2.0-bin phoenix-5.0.0-HBase-2.0-bin
      
    • 修改三台Linux文件句柄数

      vim /etc/security/limits.conf
      #在文件的末尾添加以下内容,*号不能去掉
      
      * soft nofile 65536
      * hard nofile 131072
      * soft nproc 2048
      * hard nproc 4096
      
    • 将Phoenix所有jar包分发到Hbase的lib目录下

      #拷贝到第一台机器
      cd /export/server/phoenix-5.0.0-HBase-2.0-bin/
      cp phoenix-* /export/server/hbase-2.1.0/lib/
      cd /export/server/hbase-2.1.0/lib/
      #分发给第二台和第三台
      scp phoenix-* node2:$PWD
      scp phoenix-* node3:$PWD
      
    • 修改hbase-site.xml,添加一下属性

      cd /export/server/hbase-2.1.0/conf/
      vim hbase-site.xml
      
      
      <property>
          <name>hbase.unsafe.stream.capability.enforcename>
          <value>falsevalue>
        property>
      
      <property>
          <name>phoenix.schema.isNamespaceMappingEnabledname>
          <value>truevalue>
      property>
      
      <property>
        <name>hbase.regionserver.wal.codecname>
        <value>org.apache.hadoop.hbase.regionserver.wal.IndexedWALEditCodecvalue>
      property>
      
      <property>
        <name>phoenix.schema.isNamespaceMappingEnabledname>
        <value>truevalue>
      property>
      
    • 同步给其他两台机器

      scp hbase-site.xml node2:$PWD
      scp hbase-site.xml node3:$PWD
      
    • 同步给Phoenix

      cp hbase-site.xml /export/server/phoenix-5.0.0-HBase-2.0-bin/bin/
      
    • 重启Hbase

      stop-hbase.sh
      start-hbase.sh
      
    • 启动Phoenix

      cd /export/server/phoenix-5.0.0-HBase-2.0-bin/
      bin/sqlline.py node1:2181
      
    • 测试

      !tables
      

      [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KuMfWPJo-1616545523612)(20210323_分布式NoSQL列存储数据库Hbase(六).assets/image-20210323170434725.png)]

      [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nqVKRbLI-1616545523613)(20210323_分布式NoSQL列存储数据库Hbase(六).assets/image-20210323170543556.png)]

  • 总结

    • 解压安装
    • 修改配置
    • 启动服务
    • 测试环境

知识点10:Phoenix的语法:DDL:NS

  • http://phoenix.apache.org/language/index.html

  • 需求

    • 实现基于SQL的数据库管理:创建、切换、删除
  • 分析

    • step1:创建Namespace
    • step2:切换Namespace
    • step3:删除Namespace
  • 实现

    • 创建NS

      create schema if not exists student;
      
    • 切换NS

      use student;
      
    • 删除NS

      drop schema if exists student;
      
  • 总结

    • 基本与SQL语法一致
    • 注意:Phoenix中默认会将所有字符转换为大写,如果想要使用小写字母,必须加上双引号

知识点11:Phoenix的语法:DDL:Table

  • 需求

    • 实现基于SQL的数据表管理:创建、列举、查看、删除
  • 分析

    • step1:列举当前所有的表
    • step2:创建表
    • step3:查询表信息
    • step4:删除表
  • 实现

    • 列举

      !tables
      
    • 创建

      • 语法:http://phoenix.apache.org/language/index.html#create_table

        CREATE TABLE my_schema.my_table (
            id BIGINT not null primary key, 
            date Date
        );
        
        CREATE TABLE my_table ( 
            id INTEGER not null primary key desc, 
            m.date DATE not null,
            m.db_utilization DECIMAL, 
            i.db_utilization
        ) m.VERSIONS='3';
        
        CREATE TABLE stats.prod_metrics ( 
              host char(50) not null, 
              created_date date not null,
              txn_count bigint 
              CONSTRAINT pk PRIMARY KEY (host, created_date) 
          );
        
          CREATE TABLE IF NOT EXISTS "my_case_sensitive_table"( 
              "id" char(10) not null primary key, 
              "value" integer
          ) DATA_BLOCK_ENCODING='NONE',VERSIONS=5,MAX_FILESIZE=2000000 
          split on (?, ?, ?);
        
        
          CREATE TABLE IF NOT EXISTS my_schema.my_table (
              org_id CHAR(15), 
              entity_id CHAR(15), 
              payload binary(1000),
              CONSTRAINT pk PRIMARY KEY (org_id, entity_id) 
          ) TTL=86400
        

  • 如果Hbase中没有这个表

    use default;
    create table if not exists ORDER_DTL(
        ID varchar primary key,
        C1.STATUS varchar,
        C1.PAY_MONEY float,
        C1.PAYWAY integer,
        C1.USER_ID varchar,
        C1.OPERATION_DATE varchar,
        C1.CATEGORY varchar
    );
    
  • 如果Hbase中已存在会自动关联

    create table if not exists ORDER_INFO(
        "ROW" varchar primary key,
        "C1"."USER_ID" varchar,
        "C1"."OPERATION_DATE" varchar,
        "C1"."PAYWAY" varchar,
        "C1"."PAY_MONEY" varchar,
        "C1"."STATUS" varchar,
        "C1"."CATEGORY" varchar
    ) column_encoded_bytes=0 ;
    
    • 查看

      !desc order_info;
      
    • 删除

      drop table if exists order_dtl;
      
  • 总结

    • 创建表时,必须指定主键作为Rowkey,主键列不能加列族

    create table if not exists ORDER_INFO(
    –不能这么写
    “C1”.“ROW” varchar primary key,
    “C1”.“USER_ID” varchar,
    “C1”.“OPERATION_DATE” varchar,
    “C1”.“PAYWAY” varchar,
    “C1”.“PAY_MONEY” varchar,
    “C1”.“STATUS” varchar,
    “C1”.“CATEGORY” varchar
    ) column_encoded_bytes=0 ;

    
      
    
    - Phoenix 4.8版本之前只要创建同名的Hbase表,会自动关联数据
    
    - Phoenix 4.8版本以后,不推荐关联表的方式
    
      - 推荐使用视图关联的方式来实现,如果你要使用关联表的方式,必须加上以下参数
    
        ```
        column_encoded_bytes=0 ;
        ```
    
    - 如果关联已存在的表,Rowkey字段叫做ROW,使用时必须加上双引号
    
    

    select “ROW”,“C1”.USER_ID,“C1”.“PAYWAY” from ORDER_INFO;

    
    
    
    

知识点12:Phoenix的语法:DML:upsert

列名 数值 描述
Rowkey 02602f66-adc7-40d4-8485-76b5632b5b53 行健,编码生成
USER_ID 4944191 用户id
OPERATION_DATE 2020-04-25 12:09:16 操作时间
PAYWAY 1 支付方式
PAY_MONEY 4070 支付金额
STATUS 已提交 提交状态
CATEGORY 手机; 分类
  • 需求

    • 基于order_info订单数据实现DML插入数据
  • 分析

    • Phoenix中插入更新的命令为:upsert

      • 功能:insert + update
        • MySQL:replace
        • 如果存在就更新,如果不存在就插入
    • 语法及示例

      UPSERT INTO TEST VALUES('foo','bar',3);
      UPSERT INTO TEST(NAME,ID) VALUES('foo',123);
      UPSERT INTO TEST(ID, COUNTER) VALUES(123, 0) ON DUPLICATE KEY UPDATE COUNTER = COUNTER + 1;
      UPSERT INTO TEST(ID, MY_COL) VALUES(123, 0) ON DUPLICATE KEY IGNORE;
      
  • 实现

    • 插入一条数据

      upsert into order_info values('z8f3ca6f-2f5c-44fd-9755-1792de183845','4944191','2020-04-25 12:09:16','1','4070','未提交','电脑');
      
    • 更新USERID为123456

      upsert into order_info("ROW","USER_ID") values('z8f3ca6f-2f5c-44fd-9755-1792de183845','123456');
      
  • 总结

    • 语法类似于insert语法

    • 功能:insert + update

知识点13:Phoenix的语法:DML:delete

  • 需求

    • 基于order_info订单数据实现DML删除数据
  • 分析

    • Phoenix中插入更新的命令为:delete

    • 语法及示例

      DELETE FROM TEST;
      DELETE FROM TEST WHERE ID=123;
      DELETE FROM TEST WHERE NAME LIKE 'foo%';
      
  • 实现

    • 删除USER_ID为123456的rowkey数据

      delete from order_info where USER_ID = '123456';
      
  • 总结

    • 与MySQL是一致的

知识点14:Phoenix的语法:DQL:select

  • 需求

    • 基于order_info订单数据实现DQL查询数据
  • 分析

    • Phoenix中插入更新的命令为:select

    • 语法及示例

      SELECT * FROM TEST LIMIT 1000;
      SELECT * FROM TEST LIMIT 1000 OFFSET 100;
      SELECT full_name FROM SALES_PERSON WHERE ranking >= 5.0
          UNION ALL SELECT reviewer_name FROM CUSTOMER_REVIEW WHERE score >= 8.0
      
  • 实现

    • 查询支付方式为1的数据

      select "ROW",payway,pay_money,category from order_info where payway = '1';
      
    • 查询每种支付方式对应的用户人数,并且按照用户人数降序排序

      • 分组:每、各个、不同
      • 排序:用户人数
      select
        payway,
        count(distinct user_id) as numb
      from order_info
      group by payway 
      order by numb desc;
      
    • 查询数据的第60行到66行

      --以前的写法:limit M,N
      --M:开始位置
      --N:显示的条数
      --Phoenix的写法:limit N offset M
      select * from order_info limit 6 offset 60;//总共66行,显示最后6行
      
    • 函数支持

      • http://phoenix.apache.org/language/functions.html
  • 总结

    • 基本查询与MySQL也是一致的
    • 写的时候注意数据类型以及大小写的问题即可
    • 如果遇到SQL报错,检查语法是否支持

知识点15:Phoenix的使用:预分区

  • 需求

    • Hbase命令建表

      create Ns;tbname,列族,预分区
      
    • 创建表的时候,需要根据Rowkey来设计多个分区

  • 分析

    • Phoenix也提供了创建表时,指定分区范围的语法

      CREATE TABLE IF NOT EXISTS "my_case_sensitive_table"( 
          "id" char(10) not null primary key, 
          "value" integer
      )
      DATA_BLOCK_ENCODING='NONE',VERSIONS=5,MAX_FILESIZE=2000000 split on (?, ?, ?)
      
  • 实现

    • 创建数据表,四个分区

      drop table if exists ORDER_DTL;
      create table if not exists ORDER_DTL(
          "id" varchar primary key,
          C1."status" varchar,
          C1."money" float,
          C1."pay_way" integer,
          C1."user_id" varchar,
          C1."operation_time" varchar,
          C1."category" varchar
      ) 
      CONPRESSION='GZ'
      SPLIT ON ('3','5','7');
      
    • 插入数据

      UPSERT INTO "ORDER_DTL" VALUES('02602f66-adc7-40d4-8485-76b5632b5b53','已提交',4070,1,'4944191','2020-04-25 12:09:16','手机;');
      UPSERT INTO "ORDER_DTL" VALUES('0968a418-f2bc-49b4-b9a9-2157cf214cfd','已完成',4350,1,'1625615','2020-04-25 12:09:37','家用电器;;电脑;');
      UPSERT INTO "ORDER_DTL" VALUES('0e01edba-5e55-425e-837a-7efb91c56630','已提交',6370,3,'3919700','2020-04-25 12:09:39','男装;男鞋;');
      UPSERT INTO "ORDER_DTL" VALUES('0f46d542-34cb-4ef4-b7fe-6dcfa5f14751','已付款',9380,1,'2993700','2020-04-25 12:09:46','维修;手机;');
      UPSERT INTO "ORDER_DTL" VALUES('1fb7c50f-9e26-4aa8-a140-a03d0de78729','已完成',6400,2,'5037058','2020-04-25 12:10:13','数码;女装;');
      UPSERT INTO "ORDER_DTL" VALUES('23275016-996b-420c-8edc-3e3b41de1aee','已付款',280,1,'3018827','2020-04-25 12:09:53','男鞋;汽车;');
      UPSERT INTO "ORDER_DTL" VALUES('2375a7cf-c206-4ac0-8de4-863e7ffae27b','已完成',5600,1,'6489579','2020-04-25 12:08:55','食品;家用电器;');
      UPSERT INTO "ORDER_DTL" VALUES('269fe10c-740b-4fdb-ad25-7939094073de','已提交',8340,2,'2948003','2020-04-25 12:09:26','男装;男鞋;');
      UPSERT INTO "ORDER_DTL" VALUES('2849fa34-6513-44d6-8f66-97bccb3a31a1','已提交',7060,2,'2092774','2020-04-25 12:09:38','酒店;旅游;');
      UPSERT INTO "ORDER_DTL" VALUES('28b7e793-6d14-455b-91b3-0bd8b23b610c','已提交',640,3,'7152356','2020-04-25 12:09:49','维修;手机;');
      UPSERT INTO "ORDER_DTL" VALUES('2909b28a-5085-4f1d-b01e-a34fbaf6ce37','已提交',9390,3,'8237476','2020-04-25 12:10:08','男鞋;汽车;');
      UPSERT INTO "ORDER_DTL" VALUES('2a01dfe5-f5dc-4140-b31b-a6ee27a6e51e','已提交',7490,2,'7813118','2020-04-25 12:09:05','机票;文娱;');
      UPSERT INTO "ORDER_DTL" VALUES('2b86ab90-3180-4940-b624-c936a1e7568d','已付款',5360,2,'5301038','2020-04-25 12:08:50','维修;手机;');
      UPSERT INTO "ORDER_DTL" VALUES('2e19fbe8-7970-4d62-8e8f-d364afc2dd41','已付款',6490,0,'3141181','2020-04-25 12:09:22','食品;家用电器;');
      UPSERT INTO "ORDER_DTL" VALUES('2fc28d36-dca0-49e8-bad0-42d0602bdb40','已付款',3820,1,'9054826','2020-04-25 12:10:04','家用电器;;电脑;');
      UPSERT INTO "ORDER_DTL" VALUES('31477850-8b15-4f1b-9ec3-939f7dc47241','已提交',4650,2,'5837271','2020-04-25 12:08:52','机票;文娱;');
      UPSERT INTO "ORDER_DTL" VALUES('39319322-2d80-41e7-a862-8b8858e63316','已提交',5000,1,'5686435','2020-04-25 12:08:51','家用电器;;电脑;');
      UPSERT INTO "ORDER_DTL" VALUES('3d2254bd-c25a-404f-8e42-2faa4929a629','已完成',5000,1,'1274270','2020-04-25 12:08:43','男装;男鞋;');
      UPSERT INTO "ORDER_DTL" VALUES('42f7fe21-55a3-416f-9535-baa222cc0098','已完成',3600,2,'2661641','2020-04-25 12:09:58','维修;手机;');
      UPSERT INTO "ORDER_DTL" VALUES('44231dbb-9e58-4f1a-8c83-be1aa814be83','已提交',3950,1,'3855371','2020-04-25 12:08:39','数码;女装;');
      UPSERT INTO "ORDER_DTL" VALUES('526e33d2-a095-4e19-b759-0017b13666ca','已完成',3280,0,'5553283','2020-04-25 12:09:01','食品;家用电器;');
      UPSERT INTO "ORDER_DTL" VALUES('5a6932f4-b4a4-4a1a-b082-2475d13f9240','已提交',50,2,'1764961','2020-04-25 12:10:07','家用电器;;电脑;');
      UPSERT INTO "ORDER_DTL" VALUES('5fc0093c-59a3-417b-a9ff-104b9789b530','已提交',6310,2,'1292805','2020-04-25 12:09:36','男装;男鞋;');
      UPSERT INTO "ORDER_DTL" VALUES('605c6dd8-123b-4088-a047-e9f377fcd866','已完成',8980,2,'6202324','2020-04-25 12:09:54','机票;文娱;');
      UPSERT INTO "ORDER_DTL" VALUES('613cfd50-55c7-44d2-bb67-995f72c488ea','已完成',6830,3,'6977236','2020-04-25 12:10:06','酒店;旅游;');
      UPSERT INTO "ORDER_DTL" VALUES('62246ac1-3dcb-4f2c-8943-800c9216c29f','已提交',8610,1,'5264116','2020-04-25 12:09:14','维修;手机;');
      UPSERT INTO "ORDER_DTL" VALUES('625c7fef-de87-428a-b581-a63c71059b14','已提交',5970,0,'8051757','2020-04-25 12:09:07','男鞋;汽车;');
      UPSERT INTO "ORDER_DTL" VALUES('6d43c490-58ab-4e23-b399-dda862e06481','已提交',4570,0,'5514248','2020-04-25 12:09:34','酒店;旅游;');
      UPSERT INTO "ORDER_DTL" VALUES('70fa0ae0-6c02-4cfa-91a9-6ad929fe6b1b','已付款',4100,1,'8598963','2020-04-25 12:09:08','维修;手机;');
      UPSERT INTO "ORDER_DTL" VALUES('7170ce71-1fc0-4b6e-a339-67f525536dcd','已完成',9740,1,'4816392','2020-04-25 12:09:51','数码;女装;');
      UPSERT INTO "ORDER_DTL" VALUES('71961b06-290b-457d-bbe0-86acb013b0e3','已完成',6550,3,'2393699','2020-04-25 12:08:49','男鞋;汽车;');
      UPSERT INTO "ORDER_DTL" VALUES('72dc148e-ce64-432d-b99f-61c389cb82cd','已提交',4090,1,'2536942','2020-04-25 12:10:12','机票;文娱;');
      UPSERT INTO "ORDER_DTL" VALUES('7c0c1668-b783-413f-afc4-678a5a6d1033','已完成',3850,3,'6803936','2020-04-25 12:09:20','酒店;旅游;');
      UPSERT INTO "ORDER_DTL" VALUES('7fa02f7a-10df-4247-9935-94c8b7d4dbc0','已提交',1060,0,'6119810','2020-04-25 12:09:21','维修;手机;');
      UPSERT INTO "ORDER_DTL" VALUES('820c5e83-f2e0-42d4-b5f0-83802c75addc','已付款',9270,2,'5818454','2020-04-25 12:10:09','数码;女装;');
      UPSERT INTO "ORDER_DTL" VALUES('83ed55ec-a439-44e0-8fe0-acb7703fb691','已完成',8380,2,'6804703','2020-04-25 12:09:52','男鞋;汽车;');
      UPSERT INTO "ORDER_DTL" VALUES('85287268-f139-4d59-8087-23fa6454de9d','已取消',9750,1,'4382852','2020-04-25 12:10:00','数码;女装;');
      UPSERT INTO "ORDER_DTL" VALUES('8d32669e-327a-4802-89f4-2e91303aee59','已提交',9390,1,'4182962','2020-04-25 12:09:57','机票;文娱;');
      UPSERT INTO "ORDER_DTL" VALUES('8dadc2e4-63f1-490f-9182-793be64fed76','已付款',9350,1,'5937549','2020-04-25 12:09:02','酒店;旅游;');
      UPSERT INTO "ORDER_DTL" VALUES('94ad8ee0-8898-442c-8cb1-083a4b609616','已提交',4370,0,'4666456','2020-04-25 12:09:13','维修;手机;');
      UPSERT INTO "ORDER_DTL" VALUES('994cbb44-f0ee-45ff-a4f4-76c87bc2b972','已付款',3190,3,'3200759','2020-04-25 12:09:25','数码;女装;');
      UPSERT INTO "ORDER_DTL" VALUES('9ff3032c-8679-4247-9e6f-4caf2dc93aff','已提交',850,0,'8835231','2020-04-25 12:09:40','男鞋;汽车;');
      UPSERT INTO "ORDER_DTL" VALUES('9ff3032c-8679-4247-9e6f-4caf2dc93aff','已付款',850,0,'8835231','2020-04-25 12:09:45','食品;家用电器;');
      UPSERT INTO "ORDER_DTL" VALUES('a467ba42-f91e-48a0-865e-1703aaa45e0e','已提交',8040,0,'8206022','2020-04-25 12:09:50','家用电器;;电脑;');
      UPSERT INTO "ORDER_DTL" VALUES('a5302f47-96d9-41b4-a14c-c7a508f59282','已付款',8570,2,'5319315','2020-04-25 12:08:44','机票;文娱;');
      UPSERT INTO "ORDER_DTL" VALUES('a5b57bec-6235-45f4-bd7e-6deb5cd1e008','已提交',5700,3,'6486444','2020-04-25 12:09:27','酒店;旅游;');
      UPSERT INTO "ORDER_DTL" VALUES('ae5c3363-cf8f-48a9-9676-701a7b0a7ca5','已付款',7460,1,'2379296','2020-04-25 12:09:23','维修;手机;');
      UPSERT INTO "ORDER_DTL" VALUES('b1fb2399-7cf2-4af5-960a-a4d77f4803b8','已提交',2690,3,'6686018','2020-04-25 12:09:55','数码;女装;');
      UPSERT INTO "ORDER_DTL" VALUES('b21c7dbd-dabd-4610-94b9-d7039866a8eb','已提交',6310,2,'1552851','2020-04-25 12:09:15','男鞋;汽车;');
      UPSERT INTO "ORDER_DTL" VALUES('b4bfd4b7-51f5-480e-9e23-8b1579e36248','已提交',4000,1,'3260372','2020-04-25 12:09:35','机票;文娱;');
      UPSERT INTO "ORDER_DTL" VALUES('b63983cc-2b59-4992-84c6-9810526d0282','已提交',7370,3,'3107867','2020-04-25 12:08:45','数码;女装;');
      UPSERT INTO "ORDER_DTL" VALUES('bf60b752-1ccc-43bf-9bc3-b2aeccacc0ed','已提交',720,2,'5034117','2020-04-25 12:09:03','机票;文娱;');
      UPSERT INTO "ORDER_DTL" VALUES('c808addc-8b8b-4d89-99b1-db2ed52e61b4','已提交',3630,1,'6435854','2020-04-25 12:09:10','酒店;旅游;');
      UPSERT INTO "ORDER_DTL" VALUES('cc9dbd20-cf9f-4097-ae8b-4e73db1e4ba1','已付款',5000,0,'2007322','2020-04-25 12:08:38','维修;手机;');
      UPSERT INTO "ORDER_DTL" VALUES('ccceaf57-a5ab-44df-834a-e7b32c63efc1','已提交',2660,2,'7928516','2020-04-25 12:09:42','数码;女装;');
      UPSERT INTO "ORDER_DTL" VALUES('d7be5c39-e07c-40e8-bf09-4922fbc6335c','已付款',8750,2,'1250995','2020-04-25 12:09:09','食品;家用电器;');
      UPSERT INTO "ORDER_DTL" VALUES('dfe16df7-4a46-4b6f-9c6d-083ec215218e','已完成',410,0,'1923817','2020-04-25 12:09:56','家用电器;;电脑;');
      UPSERT INTO "ORDER_DTL" VALUES('e1241ad4-c9c1-4c17-93b9-ef2c26e7f2b2','已付款',6760,0,'2457464','2020-04-25 12:08:54','数码;女装;');
      UPSERT INTO "ORDER_DTL" VALUES('e180a9f2-9f80-4b6d-99c8-452d6c037fc7','已完成',8120,2,'7645270','2020-04-25 12:09:32','男鞋;汽车;');
      UPSERT INTO "ORDER_DTL" VALUES('e4418843-9ac0-47a7-bfd8-d61c4d296933','已付款',8170,2,'7695668','2020-04-25 12:09:11','家用电器;;电脑;');
      UPSERT INTO "ORDER_DTL" VALUES('e8b3bb37-1019-4492-93c7-305177271a71','已完成',2560,2,'4405460','2020-04-25 12:10:05','男装;男鞋;');
      UPSERT INTO "ORDER_DTL" VALUES('eb1a1a22-953a-42f1-b594-f5dfc8fb6262','已完成',2370,2,'8233485','2020-04-25 12:09:24','机票;文娱;');
      UPSERT INTO "ORDER_DTL" VALUES('ecfd18f5-45f2-4dcd-9c47-f2ad9b216bd0','已付款',8070,3,'6387107','2020-04-25 12:09:04','酒店;旅游;');
      UPSERT INTO "ORDER_DTL" VALUES('f1226752-7be3-4702-a496-3ddba56f66ec','已付款',4410,3,'1981968','2020-04-25 12:10:10','维修;手机;');
      UPSERT INTO "ORDER_DTL" VALUES('f642b16b-eade-4169-9eeb-4d5f294ec594','已提交',4010,1,'6463215','2020-04-25 12:09:29','男鞋;汽车;');
      UPSERT INTO "ORDER_DTL" VALUES('f8f3ca6f-2f5c-44fd-9755-1792de183845','已付款',5950,3,'4060214','2020-04-25 12:09:12','机票;文娱;');
      
    • 查看分区请求

      [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9PGuMMNL-1616545523616)(20210323_分布式NoSQL列存储数据库Hbase(六).assets/image-20210323175607500.png)]

  • 总结

    • 实现效果与命令实现的效果一致

    • 通过SQL建表语句实现

      create table() split 
      

知识点16:Phoenix的使用:加盐salt

  • 需求

    • Rowkey设计的时候为了避免连续,构建Rowkey的散列,如果rowkey设计是连续的,怎么解决?
  • 分析

    • 在Phoenix创建一张盐表,写入的数据会自动进行编码写入不同的分区中

      CREATE TABLE table (
          a_key VARCHAR PRIMARY KEY, 
          a_col VARCHAR
      ) SALT_BUCKETS = 20;
      
  • 实现

    • 创建一张盐表,指定分区个数为10

      drop table if exists ORDER_DTL;
      create table if not exists ORDER_DTL(
          "id" varchar primary key,
          C1."status" varchar,
          C1."money" float,
          C1."pay_way" integer,
          C1."user_id" varchar,
          C1."operation_time" varchar,
          C1."category" varchar
      ) 
      CONPRESSION='GZ', SALT_BUCKETS=10;
      

      [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DWu5bCTo-1616545523618)(20210323_分布式NoSQL列存储数据库Hbase(六).assets/image-20210323180045755.png)]

    • 写入数据

      UPSERT INTO "ORDER_DTL" VALUES('02602f66-adc7-40d4-8485-76b5632b5b53','已提交',4070,1,'4944191','2020-04-25 12:09:16','手机;');
      UPSERT INTO "ORDER_DTL" VALUES('0968a418-f2bc-49b4-b9a9-2157cf214cfd','已完成',4350,1,'1625615','2020-04-25 12:09:37','家用电器;;电脑;');
      UPSERT INTO "ORDER_DTL" VALUES('0e01edba-5e55-425e-837a-7efb91c56630','已提交',6370,3,'3919700','2020-04-25 12:09:39','男装;男鞋;');
      UPSERT INTO "ORDER_DTL" VALUES('0f46d542-34cb-4ef4-b7fe-6dcfa5f14751','已付款',9380,1,'2993700','2020-04-25 12:09:46','维修;手机;');
      UPSERT INTO "ORDER_DTL" VALUES('1fb7c50f-9e26-4aa8-a140-a03d0de78729','已完成',6400,2,'5037058','2020-04-25 12:10:13','数码;女装;');
      UPSERT INTO "ORDER_DTL" VALUES('23275016-996b-420c-8edc-3e3b41de1aee','已付款',280,1,'3018827','2020-04-25 12:09:53','男鞋;汽车;');
      UPSERT INTO "ORDER_DTL" VALUES('2375a7cf-c206-4ac0-8de4-863e7ffae27b','已完成',5600,1,'6489579','2020-04-25 12:08:55','食品;家用电器;');
      UPSERT INTO "ORDER_DTL" VALUES('269fe10c-740b-4fdb-ad25-7939094073de','已提交',8340,2,'2948003','2020-04-25 12:09:26','男装;男鞋;');
      UPSERT INTO "ORDER_DTL" VALUES('2849fa34-6513-44d6-8f66-97bccb3a31a1','已提交',7060,2,'2092774','2020-04-25 12:09:38','酒店;旅游;');
      UPSERT INTO "ORDER_DTL" VALUES('28b7e793-6d14-455b-91b3-0bd8b23b610c','已提交',640,3,'7152356','2020-04-25 12:09:49','维修;手机;');
      UPSERT INTO "ORDER_DTL" VALUES('2909b28a-5085-4f1d-b01e-a34fbaf6ce37','已提交',9390,3,'8237476','2020-04-25 12:10:08','男鞋;汽车;');
      UPSERT INTO "ORDER_DTL" VALUES('2a01dfe5-f5dc-4140-b31b-a6ee27a6e51e','已提交',7490,2,'7813118','2020-04-25 12:09:05','机票;文娱;');
      UPSERT INTO "ORDER_DTL" VALUES('2b86ab90-3180-4940-b624-c936a1e7568d','已付款',5360,2,'5301038','2020-04-25 12:08:50','维修;手机;');
      UPSERT INTO "ORDER_DTL" VALUES('2e19fbe8-7970-4d62-8e8f-d364afc2dd41','已付款',6490,0,'3141181','2020-04-25 12:09:22','食品;家用电器;');
      UPSERT INTO "ORDER_DTL" VALUES('2fc28d36-dca0-49e8-bad0-42d0602bdb40','已付款',3820,1,'9054826','2020-04-25 12:10:04','家用电器;;电脑;');
      UPSERT INTO "ORDER_DTL" VALUES('31477850-8b15-4f1b-9ec3-939f7dc47241','已提交',4650,2,'5837271','2020-04-25 12:08:52','机票;文娱;');
      UPSERT INTO "ORDER_DTL" VALUES('39319322-2d80-41e7-a862-8b8858e63316','已提交',5000,1,'5686435','2020-04-25 12:08:51','家用电器;;电脑;');
      UPSERT INTO "ORDER_DTL" VALUES('3d2254bd-c25a-404f-8e42-2faa4929a629','已完成',5000,1,'1274270','2020-04-25 12:08:43','男装;男鞋;');
      UPSERT INTO "ORDER_DTL" VALUES('42f7fe21-55a3-416f-9535-baa222cc0098','已完成',3600,2,'2661641','2020-04-25 12:09:58','维修;手机;');
      UPSERT INTO "ORDER_DTL" VALUES('44231dbb-9e58-4f1a-8c83-be1aa814be83','已提交',3950,1,'3855371','2020-04-25 12:08:39','数码;女装;');
      UPSERT INTO "ORDER_DTL" VALUES('526e33d2-a095-4e19-b759-0017b13666ca','已完成',3280,0,'5553283','2020-04-25 12:09:01','食品;家用电器;');
      UPSERT INTO "ORDER_DTL" VALUES('5a6932f4-b4a4-4a1a-b082-2475d13f9240','已提交',50,2,'1764961','2020-04-25 12:10:07','家用电器;;电脑;');
      UPSERT INTO "ORDER_DTL" VALUES('5fc0093c-59a3-417b-a9ff-104b9789b530','已提交',6310,2,'1292805','2020-04-25 12:09:36','男装;男鞋;');
      UPSERT INTO "ORDER_DTL" VALUES('605c6dd8-123b-4088-a047-e9f377fcd866','已完成',8980,2,'6202324','2020-04-25 12:09:54','机票;文娱;');
      UPSERT INTO "ORDER_DTL" VALUES('613cfd50-55c7-44d2-bb67-995f72c488ea','已完成',6830,3,'6977236','2020-04-25 12:10:06','酒店;旅游;');
      UPSERT INTO "ORDER_DTL" VALUES('62246ac1-3dcb-4f2c-8943-800c9216c29f','已提交',8610,1,'5264116','2020-04-25 12:09:14','维修;手机;');
      UPSERT INTO "ORDER_DTL" VALUES('625c7fef-de87-428a-b581-a63c71059b14','已提交',5970,0,'8051757','2020-04-25 12:09:07','男鞋;汽车;');
      UPSERT INTO "ORDER_DTL" VALUES('6d43c490-58ab-4e23-b399-dda862e06481','已提交',4570,0,'5514248','2020-04-25 12:09:34','酒店;旅游;');
      UPSERT INTO "ORDER_DTL" VALUES('70fa0ae0-6c02-4cfa-91a9-6ad929fe6b1b','已付款',4100,1,'8598963','2020-04-25 12:09:08','维修;手机;');
      UPSERT INTO "ORDER_DTL" VALUES('7170ce71-1fc0-4b6e-a339-67f525536dcd','已完成',9740,1,'4816392','2020-04-25 12:09:51','数码;女装;');
      UPSERT INTO "ORDER_DTL" VALUES('71961b06-290b-457d-bbe0-86acb013b0e3','已完成',6550,3,'2393699','2020-04-25 12:08:49','男鞋;汽车;');
      UPSERT INTO "ORDER_DTL" VALUES('72dc148e-ce64-432d-b99f-61c389cb82cd','已提交',4090,1,'2536942','2020-04-25 12:10:12','机票;文娱;');
      UPSERT INTO "ORDER_DTL" VALUES('7c0c1668-b783-413f-afc4-678a5a6d1033','已完成',3850,3,'6803936','2020-04-25 12:09:20','酒店;旅游;');
      UPSERT INTO "ORDER_DTL" VALUES('7fa02f7a-10df-4247-9935-94c8b7d4dbc0','已提交',1060,0,'6119810','2020-04-25 12:09:21','维修;手机;');
      UPSERT INTO "ORDER_DTL" VALUES('820c5e83-f2e0-42d4-b5f0-83802c75addc','已付款',9270,2,'5818454','2020-04-25 12:10:09','数码;女装;');
      UPSERT INTO "ORDER_DTL" VALUES('83ed55ec-a439-44e0-8fe0-acb7703fb691','已完成',8380,2,'6804703','2020-04-25 12:09:52','男鞋;汽车;');
      UPSERT INTO "ORDER_DTL" VALUES('85287268-f139-4d59-8087-23fa6454de9d','已取消',9750,1,'4382852','2020-04-25 12:10:00','数码;女装;');
      UPSERT INTO "ORDER_DTL" VALUES('8d32669e-327a-4802-89f4-2e91303aee59','已提交',9390,1,'4182962','2020-04-25 12:09:57','机票;文娱;');
      UPSERT INTO "ORDER_DTL" VALUES('8dadc2e4-63f1-490f-9182-793be64fed76','已付款',9350,1,'5937549','2020-04-25 12:09:02','酒店;旅游;');
      UPSERT INTO "ORDER_DTL" VALUES('94ad8ee0-8898-442c-8cb1-083a4b609616','已提交',4370,0,'4666456','2020-04-25 12:09:13','维修;手机;');
      UPSERT INTO "ORDER_DTL" VALUES('994cbb44-f0ee-45ff-a4f4-76c87bc2b972','已付款',3190,3,'3200759','2020-04-25 12:09:25','数码;女装;');
      UPSERT INTO "ORDER_DTL" VALUES('9ff3032c-8679-4247-9e6f-4caf2dc93aff','已提交',850,0,'8835231','2020-04-25 12:09:40','男鞋;汽车;');
      UPSERT INTO "ORDER_DTL" VALUES('9ff3032c-8679-4247-9e6f-4caf2dc93aff','已付款',850,0,'8835231','2020-04-25 12:09:45','食品;家用电器;');
      UPSERT INTO "ORDER_DTL" VALUES('a467ba42-f91e-48a0-865e-1703aaa45e0e','已提交',8040,0,'8206022','2020-04-25 12:09:50','家用电器;;电脑;');
      UPSERT INTO "ORDER_DTL" VALUES('a5302f47-96d9-41b4-a14c-c7a508f59282','已付款',8570,2,'5319315','2020-04-25 12:08:44','机票;文娱;');
      UPSERT INTO "ORDER_DTL" VALUES('a5b57bec-6235-45f4-bd7e-6deb5cd1e008','已提交',5700,3,'6486444','2020-04-25 12:09:27','酒店;旅游;');
      UPSERT INTO "ORDER_DTL" VALUES('ae5c3363-cf8f-48a9-9676-701a7b0a7ca5','已付款',7460,1,'2379296','2020-04-25 12:09:23','维修;手机;');
      UPSERT INTO "ORDER_DTL" VALUES('b1fb2399-7cf2-4af5-960a-a4d77f4803b8','已提交',2690,3,'6686018','2020-04-25 12:09:55','数码;女装;');
      UPSERT INTO "ORDER_DTL" VALUES('b21c7dbd-dabd-4610-94b9-d7039866a8eb','已提交',6310,2,'1552851','2020-04-25 12:09:15','男鞋;汽车;');
      UPSERT INTO "ORDER_DTL" VALUES('b4bfd4b7-51f5-480e-9e23-8b1579e36248','已提交',4000,1,'3260372','2020-04-25 12:09:35','机票;文娱;');
      UPSERT INTO "ORDER_DTL" VALUES('b63983cc-2b59-4992-84c6-9810526d0282','已提交',7370,3,'3107867','2020-04-25 12:08:45','数码;女装;');
      UPSERT INTO "ORDER_DTL" VALUES('bf60b752-1ccc-43bf-9bc3-b2aeccacc0ed','已提交',720,2,'5034117','2020-04-25 12:09:03','机票;文娱;');
      UPSERT INTO "ORDER_DTL" VALUES('c808addc-8b8b-4d89-99b1-db2ed52e61b4','已提交',3630,1,'6435854','2020-04-25 12:09:10','酒店;旅游;');
      UPSERT INTO "ORDER_DTL" VALUES('cc9dbd20-cf9f-4097-ae8b-4e73db1e4ba1','已付款',5000,0,'2007322','2020-04-25 12:08:38','维修;手机;');
      UPSERT INTO "ORDER_DTL" VALUES('ccceaf57-a5ab-44df-834a-e7b32c63efc1','已提交',2660,2,'7928516','2020-04-25 12:09:42','数码;女装;');
      UPSERT INTO "ORDER_DTL" VALUES('d7be5c39-e07c-40e8-bf09-4922fbc6335c','已付款',8750,2,'1250995','2020-04-25 12:09:09','食品;家用电器;');
      UPSERT INTO "ORDER_DTL" VALUES('dfe16df7-4a46-4b6f-9c6d-083ec215218e','已完成',410,0,'1923817','2020-04-25 12:09:56','家用电器;;电脑;');
      UPSERT INTO "ORDER_DTL" VALUES('e1241ad4-c9c1-4c17-93b9-ef2c26e7f2b2','已付款',6760,0,'2457464','2020-04-25 12:08:54','数码;女装;');
      UPSERT INTO "ORDER_DTL" VALUES('e180a9f2-9f80-4b6d-99c8-452d6c037fc7','已完成',8120,2,'7645270','2020-04-25 12:09:32','男鞋;汽车;');
      UPSERT INTO "ORDER_DTL" VALUES('e4418843-9ac0-47a7-bfd8-d61c4d296933','已付款',8170,2,'7695668','2020-04-25 12:09:11','家用电器;;电脑;');
      UPSERT INTO "ORDER_DTL" VALUES('e8b3bb37-1019-4492-93c7-305177271a71','已完成',2560,2,'4405460','2020-04-25 12:10:05','男装;男鞋;');
      UPSERT INTO "ORDER_DTL" VALUES('eb1a1a22-953a-42f1-b594-f5dfc8fb6262','已完成',2370,2,'8233485','2020-04-25 12:09:24','机票;文娱;');
      UPSERT INTO "ORDER_DTL" VALUES('ecfd18f5-45f2-4dcd-9c47-f2ad9b216bd0','已付款',8070,3,'6387107','2020-04-25 12:09:04','酒店;旅游;');
      UPSERT INTO "ORDER_DTL" VALUES('f1226752-7be3-4702-a496-3ddba56f66ec','已付款',4410,3,'1981968','2020-04-25 12:10:10','维修;手机;');
      UPSERT INTO "ORDER_DTL" VALUES('f642b16b-eade-4169-9eeb-4d5f294ec594','已提交',4010,1,'6463215','2020-04-25 12:09:29','男鞋;汽车;');
      UPSERT INTO "ORDER_DTL" VALUES('f8f3ca6f-2f5c-44fd-9755-1792de183845','已付款',5950,3,'4060214','2020-04-25 12:09:12','机票;文娱;');
      
    • Phoenix中查看

      select "id" from ORDER_DTL;
      

      Hbase二级索引_Hive on Hbase 及phoenix详解_第1张图片

    • Hbase中查看

      scan 'ORDER_DTL'
      

      Hbase二级索引_Hive on Hbase 及phoenix详解_第2张图片

  • 总结

    • 由Phoenix来实现自动编码,解决Rowkey的热点问题,不需要自己设计散列的Rowkey

知识点17:Phoenix的使用:视图

  • 需求

    • 直接关联Hbase中的表,会导致误删除,对数据的权限会有影响,容易出现问题,如何避免?
  • 分析

    • Phoenix中建议使用视图的方式来关联Hbase中已有的表
    • 通过构建关联视图,可以解决大部分数据查询的数据,不影响数据
    • 视图:理解为只读的表
  • 实现

    • 创建视图,关联Hbase中已经存在的表

      create view if not exists "MOMO_CHAT"."MSG" (
          "pk" varchar primary key, -- 指定ROWKEY映射到主键
          "C1"."msg_time" varchar,
          "C1"."sender_nickyname" varchar,
          "C1"."sender_account" varchar,
          "C1"."sender_sex" varchar,
          "C1"."sender_ip" varchar,
          "C1"."sender_os" varchar,
          "C1"."sender_phone_type" varchar,
          "C1"."sender_network" varchar,
          "C1"."sender_gps" varchar,
          "C1"."receiver_nickyname" varchar,
          "C1"."receiver_ip" varchar,
          "C1"."receiver_account" varchar,
          "C1"."receiver_os" varchar,
          "C1"."receiver_phone_type" varchar,
          "C1"."receiver_network" varchar,
          "C1"."receiver_gps" varchar,
          "C1"."receiver_sex" varchar,
          "C1"."msg_type" varchar,
          "C1"."distance" varchar
      );
      
    • 查询数据

      select 
        "pk",
        "C1"."msg_time",
        "C1"."sender_account",
        "C1"."receiver_account" 
      from "MOMO_CHAT"."MSG" 
      limit 10;
      
  • 总结

    • 工作中主要构建的都是视图
    • MySQL:视图
      • Hive:外部表
      • Phoenix:视图

知识点18:Phoenix的使用:JDBC

  • 需求

    • 工作中实际使用SQL,会基于程序中使用JDBC的方式来提交SQL语句,在Phoenix中如何实现?
  • 分析

    • Phoenix支持使用JDBC的方式来提交SQL语句

    • 例如:聊天分析案例中需求:查询条件为日期【年-月-日】 + 发送人ID + 接受人ID

      select 
        * 
      from "MOMO_CHAT"."MSG" 
      where 
        substr("msg_time",0,10) = '2021-03-22' 
        and "sender_account" = '17351912952' 
        and "receiver_account" = '17742251415';
      
    • 可以在代码中基于JDBC来提交SQL查询

  • 实现

    • 构建JDBC连接Phoenix

      package cn.itcast.momo_chat.service.impl;
      
      import cn.itcast.momo_chat.entity.Msg;
      import cn.itcast.momo_chat.service.ChatMessageService;
      import org.apache.phoenix.jdbc.PhoenixDriver;
      
      import java.sql.*;
      import java.util.ArrayList;
      import java.util.List;
      
      /**
       * @ClassName PhoenixChatMessageService
       * @Description TODO JDBC连接Phoenix实现数据查询
       * @Create By     Frank
       */
      public class PhoenixChatMessageService implements ChatMessageService {
               
          private Connection connection;
      
          public PhoenixChatMessageService() throws ClassNotFoundException, SQLException {
               
              try {
               
                  //申明驱动类
                  Class.forName(PhoenixDriver.class.getName());
      //            System.out.println(PhoenixDriver.class.getName());
                  //构建连接
                  connection = DriverManager.getConnection("jdbc:phoenix:node1,node2,node3:2181");
              } catch (ClassNotFoundException e) {
               
                  throw new RuntimeException("加载Phoenix驱动失败!");
              } catch (SQLException e) {
               
                  throw new RuntimeException("获取Phoenix JDBC连接失败!");
              }
          }
          @Override
          public List<Msg> getMessage(String date, String sender, String receiver) throws Exception {
               
              PreparedStatement ps = connection.prepareStatement(
                      "SELECT * FROM MOMO_CHAT.MSG T WHERE substr(\"msg_time\", 0, 10) = ? "
                              + "AND T.\"sender_account\" = ? "
                              + "AND T.\"receiver_account\" = ? ");
      
              ps.setString(1, date);
              ps.setString(2, sender);
              ps.setString(3, receiver);
      
              ResultSet rs = ps.executeQuery();
              List<Msg> msgList = new ArrayList<>();
      
              while(rs.next()) {
               
                  Msg msg = new Msg();
                  msg.setMsg_time(rs.getString("msg_time"));
                  msg.setSender_nickyname(rs.getString("sender_nickyname"));
                  msg.setSender_account(rs.getString("sender_account"));
                  msg.setSender_sex(rs.getString("sender_sex"));
                  msg.setSender_ip(rs.getString("sender_ip"));
                  msg.setSender_os(rs.getString("sender_os"));
                  msg.setSender_phone_type(rs.getString("sender_phone_type"));
                  msg.setSender_network(rs.getString("sender_network"));
                  msg.setSender_gps(rs.getString("sender_gps"));
                  msg.setReceiver_nickyname(rs.getString("receiver_nickyname"));
                  msg.setReceiver_ip(rs.getString("receiver_ip"));
                  msg.setReceiver_account(rs.getString("receiver_account"));
                  msg.setReceiver_os(rs.getString("receiver_os"));
                  msg.setReceiver_phone_type(rs.getString("receiver_phone_type"));
                  msg.setReceiver_network(rs.getString("receiver_network"));
                  msg.setReceiver_gps(rs.getString("receiver_gps"));
                  msg.setReceiver_sex(rs.getString("receiver_sex"));
                  msg.setMsg_type(rs.getString("msg_type"));
                  msg.setDistance(rs.getString("distance"));
      
                  msgList.add(msg);
              }
              return msgList;
          }
      
          @Override
          public void close() {
               
              try {
               
                  connection.close();
              } catch (SQLException e) {
               
                  e.printStackTrace();
              }
          }
      
      
          public static void main(String[] args) throws Exception {
               
              ChatMessageService chatMessageService = new PhoenixChatMessageService();
              List<Msg> message = chatMessageService.getMessage("2021-03-22", "17351912952", "17742251415");
      
              for (Msg msg : message) {
               
                  System.out.println(msg);
              }
      
              chatMessageService.close();
          }
      }
      
      
      
    • 运行查看结果

Hbase二级索引_Hive on Hbase 及phoenix详解_第3张图片

  • 总结

    • Phoenix支持SQL
    • 支持JDBC方式提交SQL语句实现数据处理

你可能感兴趣的:(#,Hbase)