- 大语言模型LLM基础扫盲速通版
SmallerFL
NLP&机器学习语言模型人工智能自然语言处理llmchatgpt
文章目录1.什么是LLM?2.LLM如何工作?3.LLM开发的关键里程碑4.训练可用LLM模型的完整流程5.LLM具备的能力6.领先的LLM模型包含哪些?7.建议从头开始训练LLM吗?8.LLM的训练数据源包含哪些?9.其他关于LLM的常见问题9.1Transformer在LLM中有何意义?9.2在LLM中,微调(fine-tuning)是什么?9.3模型大小如何影响LLM的性能?9.4LLM能生
- Firefly-LLaMA2-Chinese - 开源中文LLaMA2大模型
伊织产研
Firefly-LLaMA2LLaMA-2
文章目录关于模型列表&数据列表训练细节增量预训练&指令微调数据格式&数据处理逻辑增量预训练指令微调模型推理权重合并模型推理部署关于github:https://github.com/yangjianxin1/Firefly-LLaMA2-Chinese本项目与Firefly一脉相承,专注于低资源增量预训练,既支持对Baichuan2、Qwen、InternLM等原生中文模型进行增量预训练,也可对L
- ML.NET速览
aixing8475
人工智能操作系统runtime
什么是ML.NET?ML.NET是由微软创建,为.NET开发者准备的开源机器学习框架。它是跨平台的,可以在macOS,Linux及Windows上运行。机器学习管道ML.NET通过管道(pipeline)方式组合机器学习过程。整个管道分为以下四个部分:LoadData加载数据TransformData转换数据ChooseAlgorithm选择算法TrainModel训练模型示例建立一个控制台项目。
- 2025 年,人工智能的发展还是「算力至上」吗?
开心的AI频道
人工智能
算力仍是基础,但不再是唯一关键,从算力至上到多维发展算力:不可或缺的基石从市场数据来看,全球智能算力需求呈现爆发式增长,预计到2025年市场规模将达103.4亿美元,年复合增长率高达17.7%。这一增长的背后,显示出AI应用从“小打小闹”走向真实落地。以大模型为例,训练一个模型需要调用约3万个AI芯片,这种规模的算力需求使得算力基础设施建设成为各国竞相布局的战略重点。工信部等六部门联合发布的《算力
- 代码随想录算法训练营第十五天| 二叉树3
Rachela_z
算法
110.平衡二叉树(优先掌握递归)再一次涉及到,什么是高度,什么是深度,可以巩固一下。题目链接/文章讲解/视频讲解:代码随想录状态:要辨别新增函数的位置,self的用法二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数,从上往下数二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数,从下往上数#Definitionforabinarytreenode.#classTreeNode:
- 在PyTorch框架上训练ImageNet时,Dataloader加载速度慢怎么解决?
cda2024
pytorch人工智能python
在深度学习领域,PyTorch因其灵活性和易用性而受到广泛欢迎。然而,在实际应用中,特别是在处理大规模数据集如ImageNet时,Dataloader的加载速度往往成为瓶颈。本文将深入探讨这一问题,并提供多种解决方案,帮助你在PyTorch框架上高效地训练ImageNet。1.问题背景ImageNet是一个包含超过1400万张图像的大规模数据集,被广泛用于图像分类任务的研究。在PyTorch中,D
- python 语音识别
柚梓sir
神经网络语音识别人工智能
在python中训练一个语音识别系统主要需要以下几个步骤:-语料库准备-数据预处理-特征提取-训练模型第一部分:语料库的准备什么是语料库?语料库长什么样?语料库由两部分组成,第一部分是语音,第二部分是玉莹的标注,通常为字符形式。本次项目中,我们选用的语料库是THCHS-30,这个语料库是在安静的办公室环境下,由录音人员用普通话朗读新闻的语音作为数据,总时长超过30个小时。我们利用语料库,构造转换字
- c++基础训练plus(二)
kkxdt
c++开发语言
Background从前有个荣光的王国,小A是其中的国王,他认为一个国家除了法律外还要有一些约定俗成的规则,所以今天他要赐以其规则。Description小A制定了一些规则,每条规则有一个代号,代号为不超过10的9次方的非负整数。小A的国家有n位居民,每位居民每天会且仅会遵守1条规则。小A记录了m天里每天每位居民遵守的规则代号。现在小A想要考察代号为k的规则是否符合民意,具体考察方法如下:如果在某
- 学习GO语言第三天--指针、标识符和关键字
?????????????!
Go开发学习go开发语言安全网络网络安全web安全
学习永无止境!!!目录一、指针的基本使用1.基本数据类型和内存2.指针变量和内存3.总结二、标识符的使用1.标识符的定义2.标识符定义规则3.起名规则三、关键字和预定义标识符1.关键字2.预定义标识符总结前言本文详细介绍了Go语言中的指针的基本使用、标识符的使用,以及记录了Go语言中的关键字和预定义标识符。一、指针的基本使用1.基本数据类型和内存代码示例packagemainimport"fmt"
- 代码随想录算法训练营第三十七天-动态规划-完全背包-理论基础
taoyong001
算法动态规划c++leetcode
完全背包与01背包根本区别就是物品的数量完全背包,物品的数量是无限的,可以任意取多个01背包物品的数量则只有一个遍历顺序01背包的一维滚动数组必须要从后向前遍历,这是防止一个物品被多次加入背包中而完全背包就是要多次加入物品,所以遍历自然而然就变成正序遍历了for(intj=weight[i];j<=capacityOfCurrentBag;++j)因为是二层遍历,且这两层遍历可以交换可以交换的本质
- xgboost在spark集群使用指南
一颗小草333
算法mapreducespark数据挖掘
简介XGBoost是一个优化的分布式梯度增强库,具有高效、灵活和可移植性。在梯度增强框架下实现了机器学习算法。XGBoost提供了一种并行树增强(也称为GBDT、GBM),可以快速、准确地解决许多数据科学问题。相同的代码在主要的分布式环境(Hadoop、SGE、MPI)上运行,可以解决数十亿个示例的训练问题。xgb相对于gbt所做的改进:1.2.3.XGBoost可以使用R、python、java
- 代码随想录算法训练营第三十六天-动态规划-474.一和零
taoyong001
算法动态规划c++leetcode
背包问题本身就已经够反思维的了,竟然物品会有两个维度的情况,这是闹哪样?题目要求是最大子集的个数题目中的mmm和nnn可以类比为容器,要装潢这个容器,最多要多少个元素的个数,就是结果,这个容器最多有mmm个0,nnn个1这个容器相当于一个背包,这个背包是有两个维度,最多有mmm个0,nnn个1,装潢这个背包最多需要多少个物品给出的数据集就是物品这是一道01背包问题动规五部曲这里要使用一个二维的动规
- 目标检测算法以及常用库概述
YOLO大师
目标检测算法人工智能
YOLO目标检测创新改进与实战案例专栏专栏目录:YOLO有效改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLO基础解析+创新改进+实战案例目标检测是在图像中发现并识别物体的过程,它是深度学习和图像处理领域的重要成果之一。在创建物体定位时,识别物体时,常见的一种方法是使用边界框。这种方法具有很高的通用,可以训练目标检测模型来识别和检测多个特
- 飞速搭震撼上线 开启软件开发智能化新篇章
低代码
近日,飞速低代码开发平台迎来了一项具有里程碑意义的重大更新——“飞速搭”正式上线。飞速搭通过深度融合前沿的人工智能技术,实现了从需求文档到应用发布的无缝衔接,一键智能生成应用,为软件开发领域带来了全新的突破和变革。“飞速搭”的实现路径高效而清晰。用户只需将需求文档或需求描述输入给预训练的大模型,这一步骤极大地简化了传统软件开发中繁琐的需求分析和文档编写过程,使用户能够更专注于核心需求的表达。大模型
- 代码随想录算法训练营第七天 | LeetCode344.反转字符串、LeetCode541.反转字符串II、卡码网54.替换数字
ORIPID
算法
代码随想录算法训练营第七天|LeetCode344.反转字符串、LeetCode541.反转字符串II、卡码网54.替换数字01-1LeetCode344.反转字符串相关资源题目链接:反转字符串文章讲解:反转字符串视频讲解:反转字符串题目:编写一个函数,其作用是将输入的字符串反转过来。输入字符串以字符数组s的形式给出。不要给另外的数组分配额外的空间,你必须原地修改输入数组、使用O(1)的额外空间解
- 蓝桥刷题 基础训练python
小馨不滑水
笔记python蓝桥杯算法
""""数列排序问题描述给定一个长度为n的数列,将这个数列按从小到大的顺序排列。1<=n<=200输入格式第一行为一个整数n。第二行包含n个整数,为待排序的数,每个整数的绝对值小于10000。输出格式输出一行,按从小到大的顺序输出排序后的数列。"""#ls=[]#a=int(input())#b=input().split()#foriinb:#ls.append(int(i))#ls.sort(
- # AI绘图中的Embedding、CLIP、Flux中的Clip与LCM SDXL加速生成解析
迪小莫学AI
人工智能embedding
AI绘图中的Embedding、CLIP、Flux中的Clip与LCMSDXL加速生成解析在现代AI绘图和深度学习中,涉及了多个复杂的概念和技术,这些技术在图像生成、训练加速以及多模态学习等方面起着至关重要的作用。在这篇博客中,我们将讨论几个关键概念:Embedding、CLIP模型、Flux中的Clip,以及LCMSDXL加速生成技术的实现原理。1.AI绘图中的Embedding是什么意思?在A
- AI学习指南Ollama篇-Ollama简介
俞兆鹏
AI学习指南人工智能ollama
一、定义大语言模型(LLM)是一种基于深度学习的自然语言处理模型,能够生成文本、回答问题、翻译语言、撰写代码等。这些模型通过海量的文本数据进行训练,学习语言的模式和结构,从而能够生成自然流畅的文本内容。随着技术的不断进步,大语言模型在各个领域都展现出了巨大的潜力。二、应用场景大语言模型的应用场景非常广泛,以下是一些常见的例子:聊天机器人:通过自然语言理解与生成,为用户提供智能对话服务。内容创作:帮
- Direct Preference Optimization (DPO): 一种无需强化学习的语言模型偏好优化方法
Yuleave
论文学习语言模型人工智能自然语言处理
论文地址:https://arxiv.org/pdf/2305.182901.背景与挑战近年来,大规模无监督语言模型(LM)在知识获取和推理能力方面取得了显著进展,但如何精确控制其行为仍是一个难题。现有的方法通常通过**强化学习从人类反馈(RLHF)**来引导模型行为,但RLHF存在以下问题:复杂性高:RLHF需要先训练一个奖励模型来反映人类偏好,然后使用强化学习来微调语言模型,使其在最大化奖励的
- 推荐洛谷网站:全面解析与实用指南
w(゚Д゚)w吓洗宝宝了
c++c语言javac#python
洛谷(Luogu)是中国领先的在线编程学习和竞赛平台,自成立以来,已经成为许多编程爱好者的首选平台。洛谷不仅提供了丰富的编程题目和资源,还支持多种编程语言,并且拥有活跃的社区氛围。本文将详细介绍洛谷的核心功能、使用技巧以及推荐理由,帮助你更好地利用洛谷进行编程学习和竞赛训练。一、洛谷的核心功能1.题库与练习洛谷拥有庞大的题库,涵盖了从入门到高级的各种难度级别的题目。这些题目不仅覆盖了基础算法,还包
- 【代码复现】ResUNet++进行语义分割(含图像切片预处理)
Cpdr
模型代码解读深度学习人工智能
文章目录参考资料1.preprocess.py1.1.参数声明1.1.1.执行命令的形参1.1.2.代码中的参数声明2.train.py2.1.参数声明2.2.main函数(不包括训练阶段)2.2.1参数说明2.2.2.读取数据部分2.2.3.创建loaders2.3.训练阶段2.4.validation阶段3.其他相关代码3.1.model.py3.1.1.res_unet_plus.py3.1
- Python支持向量机(SVM)算法:面向对象的实现与案例详解
闲人编程
进阶算法案例支持向量机算法python深度学习数据分析
目录Python支持向量机(SVM)算法:面向对象的实现与案例详解引言一、支持向量机算法概述1.1支持向量机的基本思想1.2SVM的分类问题1.3SVM的优化目标二、面向对象的SVM实现2.1类的设计2.2Python代码实现2.3代码详解三、案例分析3.1案例一:鸢尾花分类问题描述数据准备模型训练与预测输出结果3.2案例二:手写数字识别问题描述数据准备模型训练与预测输出结果四、SVM的优化与核方
- 医学类 使用TransUNet、UNet、DeepLabV3+、HRNet、PSPNet 模型对息肉分割数据集进行训练、评估和可视化 EDD2020息肉数据集分割数据集
计算机C9硕士_算法工程师
数据集语义分割医学类数据集语义分割息肉TransUNetUNet
息肉数据集/息肉瘤分割项目解决(已处理好:EDD2020数据集(EndoscopyDiseaseDetectionandSegmentationChallenge)该息肉分割数据集主要包含人体生长的(肠胃)息肉用于器官内部息肉瘤分割,息肉目标检测,息肉定位任务息肉分割是一个重要的医学影像分析任务,特别是在内窥镜检查中。EDD2020数据集是一个很好的起点。我们将使用几种流行的深度学习模型(如Tra
- L8打卡学习笔记
无涯学徒1998
学习笔记支持向量机
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊SVM与集成学习SVMSVM线性模型SVM非线性模型SVM常用参数集成学习随机森林导入数据查看数据信息数据分析随机森林模型预测结果结果分析个人总结SVM超平面:SVM在特征空间中寻找一个能够最大化类别间隔的超平面,称为最大间隔超平面。这个超平面就是将数据集分成不同类别的边界。支持向量:支持向量是离分隔超平面最近的样本点,它们决定了超平面的
- P5学习笔记
无涯学徒1998
pythonpytorch
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊运动鞋品牌识别设置GPU导入数据构建CNN模型编写训练函数编写测试函数设置动态学习率等间隔动态调整自定义调整多间隔调整余弦退火正式训练结果可视化使用模型进行预测个人总结设置GPUimporttorchimporttorch.nnasnnimporttorchvision.transformsastransformsimporttorchv
- 深度强化学习在高频交易中的动态策略优化与收益提升
二进制独立开发
非纯粹GenAIGenAI与Pythonpython人工智能神经网络自然语言处理生成对抗网络金融数据挖掘
文章目录1.高频交易的核心挑战与强化学习的适应性1.1高频交易中的核心问题1.2强化学习的适配性分析2.基于深度Q网络(DQN)的高频交易策略设计2.1状态空间构建:从LOB到特征工程2.2动作空间与奖励函数设计2.3DQN模型架构与训练优化3.业务视角下的策略优化与风险管理3.1策略有效性验证3.2实时部署与延迟优化3.3合规与伦理考量4.实验:基于NASDAQLOB数据的策略对比4.1数据集与
- 训练入口+保存模型
如若123
深度学习python人工智能
importargparsefromtorch.utils.dataimportDataLoaderfromtesting.testingimport*frommodels.model_coupled_v1importUnetfromdata.data_loadimport*importglobfromcollectionsimportOrderedDictdevice="cuda:0"iftor
- 《从传统到智能:大模型交换机的变革之路》
烁月_o9
数据库服务器运维web安全安全
大模型交换机是一种专门为大规模人工智能模型提供网络和计算资源调度的硬件设备。以下是关于它的详细介绍:特点高带宽和低延迟:大模型的训练和推理通常需要处理大量的数据,高带宽可以确保数据在各个计算节点之间快速传输,低延迟则能减少数据传输过程中可能出现的瓶颈,提高训练和推理的效率。智能路由与数据调度:基于AI算法的调度机制,能够动态地调整数据传输路径,以应对不同网络条件和负载的变化,避免某些节点的拥塞,确
- 第38周:猫狗识别 (Tensorflow实战第八周)
weixin_46620278
tensorflow人工智能python
目录前言一、前期工作1.1设置GPU1.2导入数据输出二、数据预处理2.1加载数据2.2再次检查数据2.3配置数据集2.4可视化数据三、构建VGG-16网络3.1VGG-16网络介绍3.2搭建VGG-16模型四、编译五、训练模型六、模型评估七、预测总结前言本文为中的学习记录博客原作者:说在前面1)本周任务:了解model.train_on_batch()并运用;了解tqdm,并使用tqdm实现可视
- 6 回归集成:xgb、lgb、cat
汀沿河
#2比赛常用的代码回归数据挖掘人工智能
这个代码是从kaggle上拷贝过来的:如何使用三个树模型模块化训练;文本特征如何做,如何挖掘;时间特征的处理;模型权重集成;importpandasaspdimportmathimportnumpyasnpimportjoblibimportoptunafromlightgbmimportLGBMRegressorfromcatboostimportCatBoostRegressorfromxgb
- html
周华华
html
js
1,数组的排列
var arr=[1,4,234,43,52,];
for(var x=0;x<arr.length;x++){
for(var y=x-1;y<arr.length;y++){
if(arr[x]<arr[y]){
&
- 【Struts2 四】Struts2拦截器
bit1129
struts2拦截器
Struts2框架是基于拦截器实现的,可以对某个Action进行拦截,然后某些逻辑处理,拦截器相当于AOP里面的环绕通知,即在Action方法的执行之前和之后根据需要添加相应的逻辑。事实上,即使struts.xml没有任何关于拦截器的配置,Struts2也会为我们添加一组默认的拦截器,最常见的是,请求参数自动绑定到Action对应的字段上。
Struts2中自定义拦截器的步骤是:
- make:cc 命令未找到解决方法
daizj
linux命令未知make cc
安装rz sz程序时,报下面错误:
[root@slave2 src]# make posix
cc -O -DPOSIX -DMD=2 rz.c -o rz
make: cc:命令未找到
make: *** [posix] 错误 127
系统:centos 6.6
环境:虚拟机
错误原因:系统未安装gcc,这个是由于在安
- Oracle之Job应用
周凡杨
oracle job
最近写服务,服务上线后,需要写一个定时执行的SQL脚本,清理并更新数据库表里的数据,应用到了Oracle 的 Job的相关知识。在此总结一下。
一:查看相关job信息
1、相关视图
dba_jobs
all_jobs
user_jobs
dba_jobs_running 包含正在运行
- 多线程机制
朱辉辉33
多线程
转至http://blog.csdn.net/lj70024/archive/2010/04/06/5455790.aspx
程序、进程和线程:
程序是一段静态的代码,它是应用程序执行的蓝本。进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。线程是比进程更小的单位,一个进程执行过程中可以产生多个线程,每个线程有自身的
- web报表工具FineReport使用中遇到的常见报错及解决办法(一)
老A不折腾
web报表finereportjava报表报表工具
FineReport使用中遇到的常见报错及解决办法(一)
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、address pool is full:
含义:地址池满,连接数超过并发数上
- mysql rpm安装后没有my.cnf
林鹤霄
没有my.cnf
Linux下用rpm包安装的MySQL是不会安装/etc/my.cnf文件的,
至于为什么没有这个文件而MySQL却也能正常启动和作用,在这儿有两个说法,
第一种说法,my.cnf只是MySQL启动时的一个参数文件,可以没有它,这时MySQL会用内置的默认参数启动,
第二种说法,MySQL在启动时自动使用/usr/share/mysql目录下的my-medium.cnf文件,这种说法仅限于r
- Kindle Fire HDX root并安装谷歌服务框架之后仍无法登陆谷歌账号的问题
aigo
root
原文:http://kindlefireforkid.com/how-to-setup-a-google-account-on-amazon-fire-tablet/
Step 4: Run ADB command from your PC
On the PC, you need install Amazon Fire ADB driver and instal
- javascript 中var提升的典型实例
alxw4616
JavaScript
// 刚刚在书上看到的一个小问题,很有意思.大家一起思考下吧
myname = 'global';
var fn = function () {
console.log(myname); // undefined
var myname = 'local';
console.log(myname); // local
};
fn()
// 上述代码实际上等同于以下代码
m
- 定时器和获取时间的使用
百合不是茶
时间的转换定时器
定时器:定时创建任务在游戏设计的时候用的比较多
Timer();定时器
TImerTask();Timer的子类 由 Timer 安排为一次执行或重复执行的任务。
定时器类Timer在java.util包中。使用时,先实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定
- JDK1.5 Queue
bijian1013
javathreadjava多线程Queue
JDK1.5 Queue
LinkedList:
LinkedList不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方
- http认证原理和https
bijian1013
httphttps
一.基础介绍
在URL前加https://前缀表明是用SSL加密的。 你的电脑与服务器之间收发的信息传输将更加安全。
Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定。
http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后
- 【Java范型五】范型继承
bit1129
java
定义如下一个抽象的范型类,其中定义了两个范型参数,T1,T2
package com.tom.lang.generics;
public abstract class SuperGenerics<T1, T2> {
private T1 t1;
private T2 t2;
public abstract void doIt(T
- 【Nginx六】nginx.conf常用指令(Directive)
bit1129
Directive
1. worker_processes 8;
表示Nginx将启动8个工作者进程,通过ps -ef|grep nginx,会发现有8个Nginx Worker Process在运行
nobody 53879 118449 0 Apr22 ? 00:26:15 nginx: worker process
- lua 遍历Header头部
ronin47
lua header 遍历
local headers = ngx.req.get_headers()
ngx.say("headers begin", "<br/>")
ngx.say("Host : ", he
- java-32.通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小(两数组的差最小)。
bylijinnan
java
import java.util.Arrays;
public class MinSumASumB {
/**
* Q32.有两个序列a,b,大小都为n,序列元素的值任意整数,无序.
*
* 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
* 例如:
* int[] a = {100,99,98,1,2,3
- redis
开窍的石头
redis
在redis的redis.conf配置文件中找到# requirepass foobared
把它替换成requirepass 12356789 后边的12356789就是你的密码
打开redis客户端输入config get requirepass
返回
redis 127.0.0.1:6379> config get requirepass
1) "require
- [JAVA图像与图形]现有的GPU架构支持JAVA语言吗?
comsci
java语言
无论是opengl还是cuda,都是建立在C语言体系架构基础上的,在未来,图像图形处理业务快速发展,相关领域市场不断扩大的情况下,我们JAVA语言系统怎么从这么庞大,且还在不断扩大的市场上分到一块蛋糕,是值得每个JAVAER认真思考和行动的事情
- 安装ubuntu14.04登录后花屏了怎么办
cuiyadll
ubuntu
这个情况,一般属于显卡驱动问题。
可以先尝试安装显卡的官方闭源驱动。
按键盘三个键:CTRL + ALT + F1
进入终端,输入用户名和密码登录终端:
安装amd的显卡驱动
sudo
apt-get
install
fglrx
安装nvidia显卡驱动
sudo
ap
- SSL 与 数字证书 的基本概念和工作原理
darrenzhu
加密ssl证书密钥签名
SSL 与 数字证书 的基本概念和工作原理
http://www.linuxde.net/2012/03/8301.html
SSL握手协议的目的是或最终结果是让客户端和服务器拥有一个共同的密钥,握手协议本身是基于非对称加密机制的,之后就使用共同的密钥基于对称加密机制进行信息交换。
http://www.ibm.com/developerworks/cn/webspher
- Ubuntu设置ip的步骤
dcj3sjt126com
ubuntu
在单位的一台机器完全装了Ubuntu Server,但回家只能在XP上VM一个,装的时候网卡是DHCP的,用ifconfig查了一下ip是192.168.92.128,可以ping通。
转载不是错:
Ubuntu命令行修改网络配置方法
/etc/network/interfaces打开后里面可设置DHCP或手动设置静态ip。前面auto eth0,让网卡开机自动挂载.
1. 以D
- php包管理工具推荐
dcj3sjt126com
PHPComposer
http://www.phpcomposer.com/
Composer是 PHP 用来管理依赖(dependency)关系的工具。你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件。
中文文档
入门指南
下载
安装包列表
Composer 中国镜像
- Gson使用四(TypeAdapter)
eksliang
jsongsonGson自定义转换器gsonTypeAdapter
转载请出自出处:http://eksliang.iteye.com/blog/2175595 一.概述
Gson的TypeAapter可以理解成自定义序列化和返序列化 二、应用场景举例
例如我们通常去注册时(那些外国网站),会让我们输入firstName,lastName,但是转到我们都
- JQM控件之Navbar和Tabs
gundumw100
htmlxmlcss
在JQM中使用导航栏Navbar是简单的。
只需要将data-role="navbar"赋给div即可:
<div data-role="navbar">
<ul>
<li><a href="#" class="ui-btn-active&qu
- 利用归并排序算法对大文件进行排序
iwindyforest
java归并排序大文件分治法Merge sort
归并排序算法介绍,请参照Wikipeida
zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
基本思想:
大文件分割成行数相等的两个子文件,递归(归并排序)两个子文件,直到递归到分割成的子文件低于限制行数
低于限制行数的子文件直接排序
两个排序好的子文件归并到父文件
直到最后所有排序好的父文件归并到输入
- iOS UIWebView URL拦截
啸笑天
UIWebView
本文译者:candeladiao,原文:URL filtering for UIWebView on the iPhone说明:译者在做app开发时,因为页面的javascript文件比较大导致加载速度很慢,所以想把javascript文件打包在app里,当UIWebView需要加载该脚本时就从app本地读取,但UIWebView并不支持加载本地资源。最后从下文中找到了解决方法,第一次翻译,难免有
- 索引的碎片整理SQL语句
macroli
sql
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL
--设置最大允许的碎片数量,超过则对索引进行碎片
- Angularjs同步操作http请求with $promise
qiaolevip
每天进步一点点学习永无止境AngularJS纵观千象
// Define a factory
app.factory('profilePromise', ['$q', 'AccountService', function($q, AccountService) {
var deferred = $q.defer();
AccountService.getProfile().then(function(res) {
- hibernate联合查询问题
sxj19881213
sqlHibernateHQL联合查询
最近在用hibernate做项目,遇到了联合查询的问题,以及联合查询中的N+1问题。
针对无外键关联的联合查询,我做了HQL和SQL的实验,希望能帮助到大家。(我使用的版本是hibernate3.3.2)
1 几个常识:
(1)hql中的几种join查询,只有在外键关联、并且作了相应配置时才能使用。
(2)hql的默认查询策略,在进行联合查询时,会产
- struts2.xml
wuai
struts
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache