图包含了一组tf.Operation代表的计算单元对象和tf.Tensor代表的计算单元之间流动的数据。
通常TensorFlow会默认帮我们创建一张图。
查看默认图的两种方法:
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
def graph_demo():
# 图的演示
a_t = tf.constant(10)
b_t = tf.constant(20)
# 不提倡直接运用这种符号运算符进行计算
# 更常用tensorflow提供的函数进行计算
# c_t = a_t + b_t
c_t = tf.add(a_t, b_t)
print("tensorflow实现加法运算:\n", c_t)
# 获取默认图
default_g = tf.get_default_graph()
print("获取默认图:\n", default_g)
# 数据的图属性
print("a_t的graph:\n", a_t.graph)
print("b_t的graph:\n", b_t.graph)
# 操作的图属性
print("c_t的graph:\n", c_t.graph)
# 开启会话
with tf.Session() as sess:
sum_t = sess.run(c_t)
print("在sess当中的sum_t:\n", sum_t)
# 会话的图属性
print("会话的图属性:\n", sess.graph)
return None
if __name__ == '__main__':
graph_demo()
运行结果:
可以通过tf.Graph()自定义创建图
如果要在这张图中创建OP,典型用法是使用tf.Graph.as_default()上下文管理器
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
def graph_demo():
# 图的演示
a_t = tf.constant(10)
b_t = tf.constant(20)
# 不提倡直接运用这种符号运算符进行计算
# 更常用tensorflow提供的函数进行计算
# c_t = a_t + b_t
c_t = tf.add(a_t, b_t)
print("tensorflow实现加法运算:\n", c_t)
# 获取默认图
default_g = tf.get_default_graph()
print("获取默认图:\n", default_g)
# 数据的图属性
print("a_t的graph:\n", a_t.graph)
print("b_t的graph:\n", b_t.graph)
# 操作的图属性
print("c_t的graph:\n", c_t.graph)
# 自定义图
new_g = tf.Graph()
print("自定义图:\n", new_g)
# 在自定义图中去定义数据和操作
with new_g.as_default():
new_a = tf.constant(30)
new_b = tf.constant(40)
new_c = tf.add(new_a, new_b)
# 数据的图属性
print("new_a的graph:\n", new_a.graph)
print("new_b的graph:\n", new_b.graph)
# 操作的图属性
print("new_c的graph:\n", new_c.graph)
# 开启会话
with tf.Session() as sess:
sum_t = sess.run(c_t)
print("在sess当中的sum_t:\n", sum_t)
# 会话的图属性
print("会话的图属性:\n", sess.graph)
# 不同的图之间不能互相访问
# sum_new = sess.run(new_c)
# print("在sess当中的sum_new:\n", sum_new)
# 执行多个会话时要指定所在的图
with tf.Session(graph=new_g) as sess2:
sum_new = sess2.run(new_c)
print("在sess2当中的sum_new:\n", sum_new)
print("会话的图属性:\n", sess2.graph)
# 很少会同时开启不同的图,一般用默认的图就够了
return None
if __name__ == '__main__':
graph_demo()
运行结果:
【会话只会运行默认那张图,运行多张图时需要开启多个会话指定运行的图】
TensorFlow有一个亮点就是,我们能看到自己写的程序的可视化效果,这个功能就是Tensorboard。在这里我们先简单介绍一下其基本功能。
TensorFlow 可用于训练大规模深度神经网络所需的计算,使用该工具涉及的计算往往复杂而深奥。为了更方便 TensorFlow 程序的理解、调试与优化,TensorFlow提供了TensorBoard 可视化工具。
实现程序可视化过程:
TensorBoard 通过读取 TensorFlow 的事件文件来运行,需要将数据生成一个序列化的 Summary protobuf 对象。
# 返回filewriter,写入事件文件到指定目录(最好用绝对路径),以提供给tensorboard使用
tf.summary.FileWriter('./tmp/summary/test/', graph=sess.graph)
【可以在当前文件的同级目录中新建tmp文件夹,再新建summary文件夹】
这将在指定目录中生成一个 event 文件,其名称格式如下:
events.out.tfevents.{timestamp}.{hostname}
示例代码:
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
def graph_demo():
# 图的演示
a_t = tf.constant(10)
b_t = tf.constant(20)
# 不提倡直接运用这种符号运算符进行计算
# 更常用tensorflow提供的函数进行计算
# c_t = a_t + b_t
c_t = tf.add(a_t, b_t)
print("tensorflow实现加法运算:\n", c_t)
# 获取默认图
default_g = tf.get_default_graph()
print("获取默认图:\n", default_g)
# 开启会话
with tf.Session() as sess:
sum_t = sess.run(c_t)
print("在sess当中的sum_t:\n", sum_t)
# 这儿可以不用一个变量来接收的
summary_file = tf.summary.FileWriter('./tmp/summary', graph=sess.graph)
# 会话的图属性
print("会话的图属性:\n", sess.graph)
return None
if __name__ == '__main__':
graph_demo()
tensorboard --logdir="./tmp/tensorflow/summary/test/"
【在终端中切入到指定的虚拟环境,执行上面的命令】【这儿写绝对路径和相对路径都是可以的】
在浏览器中打开 TensorBoard 的图页面 127.0.0.1:6006 ,会看到与以下图形类似的图,在GRAPHS模块我们可以看到以下图结构
哪些是OP?
类型 | 实例 |
---|---|
标量运算 | add, sub, mul, div, exp【指数】, log, greater, less, equal |
向量运算 | concat, slice, splot, constant【常数量】, rank, shape, shuffle |
矩阵运算【如乘、转置】 | matmul, matrixinverse, matrixdateminant |
带状态的运算 | Variable, assgin, assginadd |
神经网络组件 | softmax, sigmoid, relu,convolution,max_pool |
存储, 恢复 | Save, Restroe |
队列及同步运算 | Enqueue, Dequeue, MutexAcquire, MutexRelease |
控制流 | Merge, Switch, Enter, Leave, NextIteration |
一个操作对象(Operation)是TensorFlow图中的一个节点, 可以接收0个或者多个输入Tensor, 并且可以输出0个或者多个Tensor,Operation对象是通过op构造函数(如tf.matmul())创建的。
例如: c = tf.matmul(a, b) 创建了一个Operation对象,类型为 MatMul类型, 它将张量a, b作为输入,c作为输出,,并且输出数据,打印的时候也是打印的数据。其中tf.matmul()是函数,在执行matmul函数的过程中会通过MatMul类创建一个与之对应的对象
# 实现一个加法运算
con_a = tf.constant(3.0)
con_b = tf.constant(4.0)
sum_c = tf.add(con_a, con_b)
print("打印con_a:\n", con_a)
print("打印con_b:\n", con_b)
print("打印sum_c:\n", sum_c)
打印语句会生成:
打印con_a:
Tensor("Const:0", shape=(), dtype=float32)
打印con_b:
Tensor("Const_1:0", shape=(), dtype=float32)
打印sum_c:
Tensor("Add:0", shape=(), dtype=float32)
注意,打印出来的是张量值,可以理解成OP当中包含了这个值。并且每一个OP指令都对应一个唯一的名称,如上面的Const:0,这个在TensorBoard上面也可以显示
请注意,tf.Tensor 对象以输出该张量的 tf.Operation 明确命名。张量名称的形式为 "
tf.Graph对象为其包含的 tf.Operation对象定义的一个命名空间。TensorFlow 会自动为图中的每个指令选择一个唯一名称,用户也可以指定描述性名称,使程序阅读起来更轻松。我们可以以以下方式改写指令名称
例如,tf.constant(42.0, name="answer") 创建了一个名为 "answer" 的新 tf.Operation 并返回一个名为 "answer:0" 的 tf.Tensor。如果默认图已包含名为 "answer" 的指令,则 TensorFlow 会在名称上附加 "1"、"2" 等字符,以便让名称具有唯一性。
a = tf.constant(3.0, name="a")
b = tf.constant(4.0, name="b" )
【c = tf.add(a, b, name='c'】