TensorFlow之图结构与TensorBoard可视化

TensorFlow之图结构与TensorBoard可视化

1.1 什么是图结构

图包含了一组tf.Operation代表的计算单元对象和tf.Tensor代表的计算单元之间流动的数据。

1.2 图相关操作

1 默认图

通常TensorFlow会默认帮我们创建一张图。

查看默认图的两种方法:

  • 通过调用tf.get_default_graph()访问 ,要将操作添加到默认图形中,直接创建OP即可。
  • op、sess都含有graph属性 ,默认都在一张图中
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()


def graph_demo():
    # 图的演示
    a_t = tf.constant(10)
    b_t = tf.constant(20)
    # 不提倡直接运用这种符号运算符进行计算
    # 更常用tensorflow提供的函数进行计算
    # c_t = a_t + b_t
    c_t = tf.add(a_t, b_t)
    print("tensorflow实现加法运算:\n", c_t)

    # 获取默认图
    default_g = tf.get_default_graph()
    print("获取默认图:\n", default_g)

    # 数据的图属性
    print("a_t的graph:\n", a_t.graph)
    print("b_t的graph:\n", b_t.graph)
    # 操作的图属性
    print("c_t的graph:\n", c_t.graph)

    # 开启会话
    with tf.Session() as sess:
        sum_t = sess.run(c_t)
        print("在sess当中的sum_t:\n", sum_t)
        # 会话的图属性
        print("会话的图属性:\n", sess.graph)

    return None


if __name__ == '__main__':
    graph_demo()

运行结果:

TensorFlow之图结构与TensorBoard可视化_第1张图片

2 创建图

  • 可以通过tf.Graph()自定义创建图

  • 如果要在这张图中创建OP,典型用法是使用tf.Graph.as_default()上下文管理器

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()


def graph_demo():
    # 图的演示
    a_t = tf.constant(10)
    b_t = tf.constant(20)
    # 不提倡直接运用这种符号运算符进行计算
    # 更常用tensorflow提供的函数进行计算
    # c_t = a_t + b_t
    c_t = tf.add(a_t, b_t)
    print("tensorflow实现加法运算:\n", c_t)

    # 获取默认图
    default_g = tf.get_default_graph()
    print("获取默认图:\n", default_g)

    # 数据的图属性
    print("a_t的graph:\n", a_t.graph)
    print("b_t的graph:\n", b_t.graph)
    # 操作的图属性
    print("c_t的graph:\n", c_t.graph)

    # 自定义图
    new_g = tf.Graph()
    print("自定义图:\n", new_g)
    # 在自定义图中去定义数据和操作
    with new_g.as_default():
        new_a = tf.constant(30)
        new_b = tf.constant(40)
        new_c = tf.add(new_a, new_b)

    # 数据的图属性
    print("new_a的graph:\n", new_a.graph)
    print("new_b的graph:\n", new_b.graph)
    # 操作的图属性
    print("new_c的graph:\n", new_c.graph)

    # 开启会话
    with tf.Session() as sess:
        sum_t = sess.run(c_t)
        print("在sess当中的sum_t:\n", sum_t)
        # 会话的图属性
        print("会话的图属性:\n", sess.graph)
        # 不同的图之间不能互相访问
        # sum_new = sess.run(new_c)
        # print("在sess当中的sum_new:\n", sum_new)
    
    #  执行多个会话时要指定所在的图
    with tf.Session(graph=new_g) as sess2:
        sum_new = sess2.run(new_c)
        print("在sess2当中的sum_new:\n", sum_new)
        print("会话的图属性:\n", sess2.graph)

    # 很少会同时开启不同的图,一般用默认的图就够了
    return None


if __name__ == '__main__':
    graph_demo()

运行结果:

TensorFlow之图结构与TensorBoard可视化_第2张图片

【会话只会运行默认那张图,运行多张图时需要开启多个会话指定运行的图】

TensorFlow有一个亮点就是,我们能看到自己写的程序的可视化效果,这个功能就是Tensorboard。在这里我们先简单介绍一下其基本功能。

2.2.3 TensorBoard:可视化学习

TensorFlow 可用于训练大规模深度神经网络所需的计算,使用该工具涉及的计算往往复杂而深奥。为了更方便 TensorFlow 程序的理解、调试与优化,TensorFlow提供了TensorBoard 可视化工具。

TensorFlow之图结构与TensorBoard可视化_第3张图片

实现程序可视化过程:

1 数据序列化-events文件

TensorBoard 通过读取 TensorFlow 的事件文件来运行,需要将数据生成一个序列化的 Summary protobuf 对象。

# 返回filewriter,写入事件文件到指定目录(最好用绝对路径),以提供给tensorboard使用
tf.summary.FileWriter('./tmp/summary/test/', graph=sess.graph)

【可以在当前文件的同级目录中新建tmp文件夹,再新建summary文件夹】

这将在指定目录中生成一个 event 文件,其名称格式如下:

events.out.tfevents.{timestamp}.{hostname}

示例代码:

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()


def graph_demo():
    # 图的演示
    a_t = tf.constant(10)
    b_t = tf.constant(20)
    # 不提倡直接运用这种符号运算符进行计算
    # 更常用tensorflow提供的函数进行计算
    # c_t = a_t + b_t
    c_t = tf.add(a_t, b_t)
    print("tensorflow实现加法运算:\n", c_t)

    # 获取默认图
    default_g = tf.get_default_graph()
    print("获取默认图:\n", default_g)

    # 开启会话
    with tf.Session() as sess:
        sum_t = sess.run(c_t)
        print("在sess当中的sum_t:\n", sum_t)

        #  这儿可以不用一个变量来接收的
        summary_file = tf.summary.FileWriter('./tmp/summary', graph=sess.graph)

        # 会话的图属性
        print("会话的图属性:\n", sess.graph)

    return None


if __name__ == '__main__':
    graph_demo()

2 启动TensorBoard

tensorboard  --logdir="./tmp/tensorflow/summary/test/"

【在终端中切入到指定的虚拟环境,执行上面的命令】【这儿写绝对路径和相对路径都是可以的】

在浏览器中打开 TensorBoard 的图页面 127.0.0.1:6006 ,会看到与以下图形类似的图,在GRAPHS模块我们可以看到以下图结构

TensorFlow之图结构与TensorBoard可视化_第4张图片

TensorFlow之图结构与TensorBoard可视化_第5张图片

2.2.4 OP

2.2.4.1 常见OP

哪些是OP?

类型 实例
标量运算 add, sub, mul, div, exp【指数】, log, greater, less, equal
向量运算 concat, slice, splot, constant【常数量】, rank, shape, shuffle
矩阵运算【如乘、转置】 matmul, matrixinverse, matrixdateminant
带状态的运算 Variable, assgin, assginadd
神经网络组件 softmax, sigmoid, relu,convolution,max_pool
存储, 恢复 Save, Restroe
队列及同步运算 Enqueue, Dequeue, MutexAcquire, MutexRelease
控制流 Merge, Switch, Enter, Leave, NextIteration

一个操作对象(Operation)是TensorFlow图中的一个节点, 可以接收0个或者多个输入Tensor, 并且可以输出0个或者多个Tensor,Operation对象是通过op构造函数(如tf.matmul())创建的。

例如: c = tf.matmul(a, b) 创建了一个Operation对象,类型为 MatMul类型, 它将张量a, b作为输入,c作为输出,,并且输出数据,打印的时候也是打印的数据。其中tf.matmul()是函数,在执行matmul函数的过程中会通过MatMul类创建一个与之对应的对象

# 实现一个加法运算
con_a = tf.constant(3.0)
con_b = tf.constant(4.0)

sum_c = tf.add(con_a, con_b)

print("打印con_a:\n", con_a)
print("打印con_b:\n", con_b)
print("打印sum_c:\n", sum_c)

打印语句会生成:

打印con_a:
 Tensor("Const:0", shape=(), dtype=float32)
打印con_b:
 Tensor("Const_1:0", shape=(), dtype=float32)
打印sum_c:
 Tensor("Add:0", shape=(), dtype=float32)

注意,打印出来的是张量值,可以理解成OP当中包含了这个值。并且每一个OP指令都对应一个唯一的名称,如上面的Const:0,这个在TensorBoard上面也可以显示

请注意,tf.Tensor 对象以输出该张量的 tf.Operation 明确命名。张量名称的形式为 ":",其中:

  • "" 是生成该张量的指令的名称  【如add】
  • "" 是一个整数,它表示该张量在指令的输出中的索引

2.2.4.2 指令名称

tf.Graph对象为其包含的 tf.Operation对象定义的一个命名空间。TensorFlow 会自动为图中的每个指令选择一个唯一名称,用户也可以指定描述性名称,使程序阅读起来更轻松。我们可以以以下方式改写指令名称

  • 每个创建新的 tf.Operation 或返回新的 tf.Tensor 的 API 函数可以接受可选的 name 参数。

例如,tf.constant(42.0, name="answer") 创建了一个名为 "answer" 的新 tf.Operation 并返回一个名为 "answer:0" 的 tf.Tensor。如果默认图已包含名为 "answer" 的指令,则 TensorFlow 会在名称上附加 "1"、"2" 等字符,以便让名称具有唯一性。

  • 当修改好之后,我们在Tensorboard显示的名字也会被修改
a = tf.constant(3.0, name="a")
b = tf.constant(4.0, name="b" )

【c = tf.add(a, b, name='c'】

TensorFlow之图结构与TensorBoard可视化_第6张图片

你可能感兴趣的:(图像处理,可视化,python,tensorflow,深度学习)