本文将实现海贼王中人物角色的识别。
我的环境:
来自专栏:【深度学习100例】
如果使用的是CPU可以忽略这步
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:
tf.config.experimental.set_memory_growth(gpus[0], True) #设置GPU显存用量按需使用
tf.config.set_visible_devices([gpus[0]],"GPU")
import matplotlib.pyplot as plt
import os,PIL
# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)
# 设置随机种子尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)
from tensorflow import keras
from tensorflow.keras import layers,models
import pathlib
data_dir = "D:\jupyter notebook\DL-100-days\datasets\hzw_photos"
data_dir = pathlib.Path(data_dir)
数据集中一共有路飞、索隆、娜美、乌索普、乔巴、山治、罗宾等7个人物角色
文件夹 | 含义 | 数量 |
---|---|---|
lufei | 路飞 | 117 张 |
suolong | 索隆 | 90 张 |
namei | 娜美 | 84 张 |
wusuopu | 乌索普 | 77张 |
qiaoba | 乔巴 | 102 张 |
shanzhi | 山治 | 47 张 |
luobin | 罗宾 | 105张 |
image_count = len(list(data_dir.glob('*/*.png')))
print("图片总数为:",image_count)
图片总数为: 621
使用image_dataset_from_directory
方法将磁盘中的数据加载到tf.data.Dataset
中
batch_size = 32
img_height = 224
img_width = 224
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
Found 621 files belonging to 7 classes.
Using 497 files for training.
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
Found 621 files belonging to 7 classes.
Using 124 files for validation.
我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。
class_names = train_ds.class_names
print(class_names)
['lufei', 'luobin', 'namei', 'qiaoba', 'shanzhi', 'suolong', 'wusuopu']
plt.figure(figsize=(10, 5)) # 图形的宽为10高为5
for images, labels in train_ds.take(1):
for i in range(8):
ax = plt.subplot(2, 4, i + 1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(class_names[labels[i]])
plt.axis("off")
plt.imshow(images[1].numpy().astype("uint8"))
for image_batch, labels_batch in train_ds:
print(image_batch.shape)
print(labels_batch.shape)
break
(32, 224, 224, 3)
(32,)
Image_batch
是形状的张量(32,180,180,3)。这是一批形状180x180x3的32张图片(最后一维指的是彩色通道RGB)。Label_batch
是形状(32,)的张量,这些标签对应32张图片AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
normalization_layer = layers.experimental.preprocessing.Rescaling(1./255)
normalization_train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y))
image_batch, labels_batch = next(iter(val_ds))
first_image = image_batch[0]
# 查看归一化后的数据
print(np.min(first_image), np.max(first_image))
0.0 0.9928046
在官方模型与自建模型之间进行二选一就可以啦,选着一个注释掉另外一个,都是正版的VGG-16哈。
VGG优缺点分析:
VGG的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)
和最大池化尺寸(2x2)
。
1)训练时间过长,调参难度大。2)需要的存储容量大,不利于部署。例如存储VGG-16
权重值文件的大小为500多MB,不利于安装到嵌入式系统中。
官网模型调用这块我放到后面几篇文章中,下面主要讲一下VGG-16
# model = keras.applications.VGG16()
# model.summary()
from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout
def VGG16(nb_classes, input_shape):
input_tensor = Input(shape=input_shape)
# 1st block
x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)
x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)
# 2nd block
x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)
x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)
# 3rd block
x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)
x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)
x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)
# 4th block
x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)
x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)
x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)
# 5th block
x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)
x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)
x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)
# full connection
x = Flatten()(x)
x = Dense(4096, activation='relu', name='fc1')(x)
x = Dense(4096, activation='relu', name='fc2')(x)
output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)
model = Model(input_tensor, output_tensor)
return model
model=VGG16(1000, (img_width, img_height, 3))
model.summary()
Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 224, 224, 3)] 0
_________________________________________________________________
block1_conv1 (Conv2D) (None, 224, 224, 64) 1792
_________________________________________________________________
block1_conv2 (Conv2D) (None, 224, 224, 64) 36928
_________________________________________________________________
block1_pool (MaxPooling2D) (None, 112, 112, 64) 0
_________________________________________________________________
block2_conv1 (Conv2D) (None, 112, 112, 128) 73856
_________________________________________________________________
block2_conv2 (Conv2D) (None, 112, 112, 128) 147584
_________________________________________________________________
block2_pool (MaxPooling2D) (None, 56, 56, 128) 0
_________________________________________________________________
block3_conv1 (Conv2D) (None, 56, 56, 256) 295168
_________________________________________________________________
block3_conv2 (Conv2D) (None, 56, 56, 256) 590080
_________________________________________________________________
block3_conv3 (Conv2D) (None, 56, 56, 256) 590080
_________________________________________________________________
block3_pool (MaxPooling2D) (None, 28, 28, 256) 0
_________________________________________________________________
block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160
_________________________________________________________________
block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808
_________________________________________________________________
block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808
_________________________________________________________________
block4_pool (MaxPooling2D) (None, 14, 14, 512) 0
_________________________________________________________________
block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_pool (MaxPooling2D) (None, 7, 7, 512) 0
_________________________________________________________________
flatten (Flatten) (None, 25088) 0
_________________________________________________________________
fc1 (Dense) (None, 4096) 102764544
_________________________________________________________________
fc2 (Dense) (None, 4096) 16781312
_________________________________________________________________
predictions (Dense) (None, 1000) 4097000
=================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
_________________________________________________________________
关于卷积的相关知识可以参考文章:https://mtyjkh.blog.csdn.net/article/details/114278995
结构说明:
blockX_convX
表示fcX
与predictions
表示blockX_pool
表示VGG-16
包含了16个隐藏层(13个卷积层和3个全连接层),故称为VGG-16
在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=1e-4)
model.compile(optimizer=opt,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
epochs = 20
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs
)
Epoch 1/20
16/16 [==============================] - 14s 461ms/step - loss: 4.5842 - accuracy: 0.1349 - val_loss: 6.8389 - val_accuracy: 0.1129
Epoch 2/20
16/16 [==============================] - 2s 146ms/step - loss: 2.1046 - accuracy: 0.1398 - val_loss: 6.7905 - val_accuracy: 0.2016
Epoch 3/20
16/16 [==============================] - 2s 144ms/step - loss: 1.7885 - accuracy: 0.3531 - val_loss: 6.7892 - val_accuracy: 0.2903
Epoch 4/20
16/16 [==============================] - 2s 145ms/step - loss: 1.2015 - accuracy: 0.6135 - val_loss: 6.7582 - val_accuracy: 0.2742
Epoch 5/20
16/16 [==============================] - 2s 148ms/step - loss: 1.1831 - accuracy: 0.6108 - val_loss: 6.7520 - val_accuracy: 0.4113
Epoch 6/20
16/16 [==============================] - 2s 143ms/step - loss: 0.5140 - accuracy: 0.8326 - val_loss: 6.7102 - val_accuracy: 0.5806
Epoch 7/20
16/16 [==============================] - 2s 150ms/step - loss: 0.2451 - accuracy: 0.9165 - val_loss: 6.6918 - val_accuracy: 0.7823
Epoch 8/20
16/16 [==============================] - 2s 147ms/step - loss: 0.2156 - accuracy: 0.9328 - val_loss: 6.7188 - val_accuracy: 0.4113
Epoch 9/20
16/16 [==============================] - 2s 143ms/step - loss: 0.1940 - accuracy: 0.9513 - val_loss: 6.6639 - val_accuracy: 0.5968
Epoch 10/20
16/16 [==============================] - 2s 143ms/step - loss: 0.0767 - accuracy: 0.9812 - val_loss: 6.6101 - val_accuracy: 0.7419
Epoch 11/20
16/16 [==============================] - 2s 146ms/step - loss: 0.0245 - accuracy: 0.9894 - val_loss: 6.5526 - val_accuracy: 0.8226
Epoch 12/20
16/16 [==============================] - 2s 149ms/step - loss: 0.0387 - accuracy: 0.9861 - val_loss: 6.5636 - val_accuracy: 0.6210
Epoch 13/20
16/16 [==============================] - 2s 152ms/step - loss: 0.2146 - accuracy: 0.9289 - val_loss: 6.7039 - val_accuracy: 0.4839
Epoch 14/20
16/16 [==============================] - 2s 152ms/step - loss: 0.2566 - accuracy: 0.9087 - val_loss: 6.6852 - val_accuracy: 0.6532
Epoch 15/20
16/16 [==============================] - 2s 149ms/step - loss: 0.0579 - accuracy: 0.9840 - val_loss: 6.5971 - val_accuracy: 0.6935
Epoch 16/20
16/16 [==============================] - 2s 152ms/step - loss: 0.0414 - accuracy: 0.9866 - val_loss: 6.6049 - val_accuracy: 0.7581
Epoch 17/20
16/16 [==============================] - 2s 146ms/step - loss: 0.0907 - accuracy: 0.9689 - val_loss: 6.6476 - val_accuracy: 0.6452
Epoch 18/20
16/16 [==============================] - 2s 147ms/step - loss: 0.0929 - accuracy: 0.9685 - val_loss: 6.6590 - val_accuracy: 0.7903
Epoch 19/20
16/16 [==============================] - 2s 146ms/step - loss: 0.0364 - accuracy: 0.9935 - val_loss: 6.5915 - val_accuracy: 0.6290
Epoch 20/20
16/16 [==============================] - 2s 151ms/step - loss: 0.1081 - accuracy: 0.9662 - val_loss: 6.6541 - val_accuracy: 0.6613
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(epochs)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
为体现原汁原味的VGG-16,本文并未对模型参数进行修改,可依据实际情况修改模型中的相关性参数,适应实际情况以便提升分类效果。
其他精彩内容:
《深度学习100例》专栏直达:【传送门】
需要数据的同学可以在评论中留下邮箱,如果觉得本文对你有帮助记得 点个关注,给个赞,加个收藏