之前在看项目组件化方案的时候,看到蘑菇街的组件化方案中有在load
方法中注册vc的方法。
所以想要完整了解一下load
方法的具体细节,另外发现initialize
方法基本上和load
是成对出现的,所以顺便就一起看一下。
initialize
官方文档
Initializes the class before it receives its first message.
(在类收到第一条消息之前初始化它。)
官方文档中对initialize方法的描述就一种懒加载的形式,在类第一次收到消息的之前初始化。
源码
IMP _class_lookupMethodAndLoadCache3(id obj, SEL sel, Class cls)
{
return lookUpImpOrForward(cls, sel, obj,
YES/*initialize*/, NO/*cache*/, YES/*resolver*/);
}
IMP lookUpImpOrForward(Class cls, SEL sel, id inst,
bool initialize, bool cache, bool resolver)
{
//如果initialize==Yes,说明需要初始化,并且该类没有进行过初始化,然后调用_class_initialize进行初始化
if (initialize && !cls->isInitialized()) {
runtimeLock.unlockRead();
_class_initialize (_class_getNonMetaClass(cls, inst));
runtimeLock.read();
}
}
void _class_initialize(Class cls)
{
assert(!cls->isMetaClass());
Class supercls;
bool reallyInitialize = NO;
// Make sure super is done initializing BEFORE beginning to initialize cls.
// See note about deadlock above.
//在初始化之前先确保父类进行了初始化操作,如果没有就先初始化父类
supercls = cls->superclass;
if (supercls && !supercls->isInitialized()) {
_class_initialize(supercls);
}
// Try to atomically set CLS_INITIALIZING.
{
monitor_locker_t lock(classInitLock);
if (!cls->isInitialized() && !cls->isInitializing()) {
cls->setInitializing();
reallyInitialize = YES;
}
}
if (reallyInitialize) {
// We successfully set the CLS_INITIALIZING bit. Initialize the class.
// Record that we're initializing this class so we can message it.
_setThisThreadIsInitializingClass(cls);
if (MultithreadedForkChild) {
// LOL JK we don't really call +initialize methods after fork().
performForkChildInitialize(cls, supercls);
return;
}
if (PrintInitializing) {
_objc_inform("INITIALIZE: thread %p: calling +[%s initialize]",
pthread_self(), cls->nameForLogging());
}
//调用初始化发送,
callInitialize(cls);
if (PrintInitializing) {
_objc_inform("INITIALIZE: thread %p: finished +[%s initialize]",
pthread_self(), cls->nameForLogging());
}
return;
}
else if (cls->isInitializing()) {
if (_thisThreadIsInitializingClass(cls)) {
return;
} else if (!MultithreadedForkChild) {
waitForInitializeToComplete(cls);
return;
} else {
_setThisThreadIsInitializingClass(cls);
performForkChildInitialize(cls, supercls);
}
}
else if (cls->isInitialized()) {
return;
}
else {
// We shouldn't be here.
_objc_fatal("thread-safe class init in objc runtime is buggy!");
}
}
void callInitialize(Class cls)
{
((void(*)(Class, SEL))objc_msgSend)(cls, SEL_initialize);
asm("");
}
可以看到,调用时会先去查看父类是否存在,并且父类是否有初始化过,如果满足条件之后,就会递归去调用
if (supercls && !supercls->isInitialized()) {
_class_initialize(supercls);
}
最后可以看到调用了一个方法callInitialize(cls)
仔细看这个方法,其实内部就是一个objc_msgSend
。
void callInitialize(Class cls)
{
((void(*)(Class, SEL))objc_msgSend)(cls, SEL_initialize);
asm("");
}
方法实现
接下来我们通过一些代码来看一下initialize
的执行顺序。
首先我们创建一个类ZZRInitizial
,然后重写一下他的initialize
方法。
#import
NS_ASSUME_NONNULL_BEGIN
@interface ZZRInitizial : NSObject
@end
NS_ASSUME_NONNULL_END
--------------------------------------------------------------
#import "ZZRInitizial.h"
@implementation ZZRInitizial
+ (void)initialize
{
NSLog(@"%s",__FUNCTION__);
}
@end
然后运行一下,发现,什么都没有打印,不过因为之前看过文档和源码,initialize是使用懒加载调用的,所以当我们没有用到它的时候没有打印也很正常。接下来我们试一下初始化一个实例。
[ZZRInitizial new];
可以看到现在就打印出来了
2019-05-05 13:58:26.566212+0800 initializeDemo[86317:3926410] +[ZZRInitizial initialize]
接下来我们定义一个继承了ZZRInitizial
的子类ZZRInitizialSubClass
,然后再调用子类的初始化实例。
[ZZRInitizialSubClass new];
然后可以看到打印出的方法
2019-05-05 14:02:42.331628+0800 initializeDemo[86412:3934965] +[ZZRInitizial initialize]
2019-05-05 14:02:42.331745+0800 initializeDemo[86412:3934965] +[ZZRInitizialSubClass initialize]
接下来我们再创建一个ZZRInitizial
的Category,然后初始化一个实例
2019-05-05 14:22:32.726589+0800 initializeDemo[86608:3962561] +[ZZRInitizial(myCategory) initialize]
我们会发现调用的是Category中的方法,而没有调用原本类中的方法了。
总结
所以我们可以看到,initialize在类或者其子类的第一个方法被调用之前调用,并且使用懒加载的调用方式,即没有使用就不会调用。
并且因为是有系统调用,所以不需要再调用[super initialize]
。
调用顺序上,会先调用父类的initialize
,然后再调用原有类的initialize
,如果有Category,并且Category中重写了initialize方法,则会调用Category中的initialize
。
load
官方文档
Invoked whenever a class or category is added to the Objective-C runtime; implement this method to perform class-specific behavior upon loading.
(当类或者类别加入runtime时,实现该方法,可以在类加载的时候做一些类特有的操作)
以上是官方文档中对load
方法的描述,也就是说当类被加入runtime,也就是被引用的时候,就会实现该方法。
另外,在每一个类、分类在程序运行的过程中除了手动调用之外,只会调用一次。
源码
load_images(const char *path __unused, const struct mach_header *mh)
{
// Return without taking locks if there are no +load methods here.
if (!hasLoadMethods((const headerType *)mh)) return;
recursive_mutex_locker_t lock(loadMethodLock);
// Discover load methods
{
rwlock_writer_t lock2(runtimeLock);
prepare_load_methods((const headerType *)mh);
}
// Call +load methods (without runtimeLock - re-entrant)
call_load_methods();
}
void prepare_load_methods(const headerType *mhdr)
{
size_t count, i;
runtimeLock.assertWriting();
classref_t *classlist =
_getObjc2NonlazyClassList(mhdr, &count);
for (i = 0; i < count; i++) {
schedule_class_load(remapClass(classlist[i]));
}
category_t **categorylist = _getObjc2NonlazyCategoryList(mhdr, &count);
for (i = 0; i < count; i++) {
category_t *cat = categorylist[i];
Class cls = remapClass(cat->cls);
if (!cls) continue; // category for ignored weak-linked class
realizeClass(cls);
assert(cls->ISA()->isRealized());
add_category_to_loadable_list(cat);
}
}
//递归查找父类,父类优先添加到集合中
static void schedule_class_load(Class cls)
{
if (!cls) return;
assert(cls->isRealized()); // _read_images should realize
if (cls->data()->flags & RW_LOADED) return;
// Ensure superclass-first ordering
schedule_class_load(cls->superclass);
add_class_to_loadable_list(cls);
cls->setInfo(RW_LOADED);
}
//把类和类的load方法添加到loadable_classes数组中,数组中每一个元素都是一个结构体,结构体中包含类和load方法的IMP
static struct loadable_class *loadable_classes = nil;
struct loadable_class {
Class cls; // may be nil
IMP method;
};
void add_class_to_loadable_list(Class cls)
{
IMP method;
loadMethodLock.assertLocked();
method = cls->getLoadMethod();
if (!method) return; // Don't bother if cls has no +load method
if (PrintLoading) {
_objc_inform("LOAD: class '%s' scheduled for +load",
cls->nameForLogging());
}
if (loadable_classes_used == loadable_classes_allocated) {
loadable_classes_allocated = loadable_classes_allocated*2 + 16;
loadable_classes = (struct loadable_class *)
realloc(loadable_classes,
loadable_classes_allocated *
sizeof(struct loadable_class));
}
loadable_classes[loadable_classes_used].cls = cls;
loadable_classes[loadable_classes_used].method = method;
loadable_classes_used++;
}
static struct loadable_category *loadable_categories = nil;
struct loadable_category {
Category cat; // may be nil
IMP method;
};
//处理分类
void add_category_to_loadable_list(Category cat)
{
IMP method;
loadMethodLock.assertLocked();
method = _category_getLoadMethod(cat);
// Don't bother if cat has no +load method
if (!method) return;
if (PrintLoading) {
_objc_inform("LOAD: category '%s(%s)' scheduled for +load",
_category_getClassName(cat), _category_getName(cat));
}
if (loadable_categories_used == loadable_categories_allocated) {
loadable_categories_allocated = loadable_categories_allocated*2 + 16;
loadable_categories = (struct loadable_category *)
realloc(loadable_categories,
loadable_categories_allocated *
sizeof(struct loadable_category));
}
loadable_categories[loadable_categories_used].cat = cat;
loadable_categories[loadable_categories_used].method = method;
loadable_categories_used++;
}
从上边这段代码的函数名就可以看出来,主要是准备load方法。
这段代码处理了类的load方法,递归并获取父类的,把类和类的load方法的IMP存储到struct loadable_class
结构体中,并把结构体添加到了loadable_classes
数组中。
另外处理分类load方法,把分类和分类的load方法的IMP存储到loadable_category
结构体中,并把结构体添加到了loadable_categories
数组中。
然后接下来是重头戏call_load_methods()
void call_load_methods(void)
{
static bool loading = NO;
bool more_categories;
loadMethodLock.assertLocked();
// Re-entrant calls do nothing; the outermost call will finish the job.
if (loading) return;
loading = YES;
void *pool = objc_autoreleasePoolPush();
do {
// 1. Repeatedly call class +loads until there aren't any more
while (loadable_classes_used > 0) {
call_class_loads();
}
// 2. Call category +loads ONCE
more_categories = call_category_loads();
// 3. Run more +loads if there are classes OR more untried categories
} while (loadable_classes_used > 0 || more_categories);
objc_autoreleasePoolPop(pool);
loading = NO;
}
static void call_class_loads(void)
{
int i;
// Detach current loadable list.
struct loadable_class *classes = loadable_classes;
int used = loadable_classes_used;
loadable_classes = nil;
loadable_classes_allocated = 0;
loadable_classes_used = 0;
// Call all +loads for the detached list.
for (i = 0; i < used; i++) {
Class cls = classes[i].cls;
load_method_t load_method = (load_method_t)classes[i].method;
if (!cls) continue;
if (PrintLoading) {
_objc_inform("LOAD: +[%s load]\n", cls->nameForLogging());
}
(*load_method)(cls, SEL_load);
}
// Destroy the detached list.
if (classes) free(classes);
}
static bool call_category_loads(void)
{
int i, shift;
bool new_categories_added = NO;
// Detach current loadable list.
struct loadable_category *cats = loadable_categories;
int used = loadable_categories_used;
int allocated = loadable_categories_allocated;
loadable_categories = nil;
loadable_categories_allocated = 0;
loadable_categories_used = 0;
// Call all +loads for the detached list.
for (i = 0; i < used; i++) {
Category cat = cats[i].cat;
load_method_t load_method = (load_method_t)cats[i].method;
Class cls;
if (!cat) continue;
cls = _category_getClass(cat);
if (cls && cls->isLoadable()) {
if (PrintLoading) {
_objc_inform("LOAD: +[%s(%s) load]\n",
cls->nameForLogging(),
_category_getName(cat));
}
(*load_method)(cls, SEL_load);
cats[i].cat = nil;
}
}
// Compact detached list (order-preserving)
shift = 0;
for (i = 0; i < used; i++) {
if (cats[i].cat) {
cats[i-shift] = cats[i];
} else {
shift++;
}
}
used -= shift;
// Copy any new +load candidates from the new list to the detached list.
new_categories_added = (loadable_categories_used > 0);
for (i = 0; i < loadable_categories_used; i++) {
if (used == allocated) {
allocated = allocated*2 + 16;
cats = (struct loadable_category *)
realloc(cats, allocated *
sizeof(struct loadable_category));
}
cats[used++] = loadable_categories[i];
}
// Destroy the new list.
if (loadable_categories) free(loadable_categories);
// Reattach the (now augmented) detached list.
// But if there's nothing left to load, destroy the list.
if (used) {
loadable_categories = cats;
loadable_categories_used = used;
loadable_categories_allocated = allocated;
} else {
if (cats) free(cats);
loadable_categories = nil;
loadable_categories_used = 0;
loadable_categories_allocated = 0;
}
if (PrintLoading) {
if (loadable_categories_used != 0) {
_objc_inform("LOAD: %d categories still waiting for +load\n",
loadable_categories_used);
}
}
return new_categories_added;
}
这段代码主要调用了类的load方法,优先调用父类的load方法,然后调用分类的load方法。
调用父类的load方法主要是通过(*load_method)(cls, SEL_load);
方法直接调用指针。
但是手动调用和自动调用的区别就是手动调用的时候是通过objc_msgSend
而不是指针。
方法实现
同样的,我们新建一个类ZZRLoad
#import
NS_ASSUME_NONNULL_BEGIN
@interface ZZRLoad : NSObject
@end
NS_ASSUME_NONNULL_END
----------------------------------------
#import "ZZRLoad.h"
@implementation ZZRLoad
+ (void)load
{
NSLog(@"%s",__FUNCTION__);
}
@end
然后运行代码,我们就会发现,ZZRLoad
的load
方法就已经执行了,而且是在最前边执行的。
2019-05-05 15:34:56.613609+0800 initializeDemo[87221:4058674] +[ZZRLoad load]
接下来基于ZZRLoad
创建一个子类ZZRLoadSubClass
,然后运行会发现:
2019-05-05 15:38:25.778688+0800 initializeDemo[87271:4065322] +[ZZRLoad load]
2019-05-05 15:38:25.779203+0800 initializeDemo[87271:4065322] +[ZZRLoadSubClass load]
两个方法都执行了load。
然后基于ZZRLoad
创建一个分类,运行后会发现:
2019-05-05 15:39:26.135793+0800 initializeDemo[87297:4067390] +[ZZRLoad load]
2019-05-05 15:39:26.136449+0800 initializeDemo[87297:4067390] +[ZZRLoadSubClass load]
2019-05-05 15:39:26.136542+0800 initializeDemo[87297:4067390] +[ZZRLoad(myCategory) load]
三个也都执行了。
总结
Load方法会在runtime加载类、分类的时候调用,每个类、分类的load方法在程序运行的过程中只会调用一次(你手动调用的不算数)。由于load函数是系统自动加载的,因此不需要调用父类的load函数,否则父类的load函数会多次执行。
区别
系统中为了保障线程安全,在load方法内部使用了锁,所以我们在使用的时候尽量需要在load方法中添加太多逻辑,防止线程阻塞。
对弈initialize方法中主要用来对一些不方便在编译期初始化的对象进行赋值。
参考资料
load - NSObject | Apple Developer Documentation
initialize - NSObject | Apple Developer Documentation
iOS类方法load和initialize详解 - 掘金
【OC底层】Category、+load方法、+initialize方法原理 - 这酸爽! - 博客园
iOS - + initialize 与 +load -
通过源码查看load和initialize -