- 惩罚线性回归模型
媛苏苏
算法/模型/函数线性回归算法回归
惩罚线性回归模型是一种常见的线性回归的变体,它在原始的线性回归模型中引入了一种惩罚项,以防止模型过拟合数据。在惩罚线性回归中,除了最小化预测值与实际值之间的平方误差(或其他损失函数)外,还会考虑模型参数的大小。惩罚项通常被加到模型的损失函数中,以限制模型参数的大小。这样做有助于减少模型对训练数据的过度拟合,提高模型的泛化能力。常见的惩罚线性回归模型包括:岭回归(RidgeRegression):岭
- L2正则线性回归(岭回归)
一壶浊酒..
深度学习回归线性回归
岭回归数据的特征比样本点还多,非满秩矩阵在求逆时会出现问题岭回归即我们所说的L2正则线性回归,在一般的线性回归最小化均方误差的基础上增加了一个参数w的L2范数的罚项,从而最小化罚项残差平方和简单说来,岭回归就是在普通线性回归的基础上引入单位矩阵。回归系数的计算公式变形如下岭回归最先用来处理特征数多于样本数的情况,现在也用于在估计中加入偏差,从而得到更好的估计。这里通过引入λ来限制了所有w之和,通过
- 岭回归算法
码银
回归数据挖掘人工智能
回归分析方法是利用数理统计方法分析数据,建立自变量和因变量间的回归模型,用于预测因变量变化的分析方法。其中比较经典的是HoerI和Kennard提出的岭回归算法。岭回归算法是在最小二乘法的基础上引|入正则项,使回归模型具有较好泛化能力和稳定性,但岭回归算法并不能处理自变量间非线性相关的情况。岭回归,又称脊回归,是对不适定问题进行回归分析时经常使用的一种正则化方法,是对最小二乘回归的一种补充,岭回归
- 关于sklearn中回归的实现
王金松
SGDRegressor既可以做岭回归,也可以做Lasso回归,也可以做ElasticNetSGDRegressor(penalty=‘l2’,max_iter=1000)penalty:l1:LassoRegressionl2:BrigeRegressionalpha:l2正则的参数l1-ratio:l1正则参数
- (Ridge, Lasso) Regression
王金松
岭回归岭回归的损失函数MSE+L2岭回归还是多元线性回归y=wTx只不过损失函数MSE添加了损失项w越小越好?因为为了提高模型的泛化能力(容错能力),w越小越好因为如果x1有错,w越小,对y的影响越小但是w为0没意义,所以w要适当保证准确率的情况下提高泛化能力和容错能力多元线性回归通过MSE(最小二乘leastsquares)保证正确率但是我们还需要模型提高泛化能力提高泛化能力min((y-y_h
- 回归预测模型:MATLAB岭回归和Lasso回归
抱抱宝
数学建模算法与应用回归matlab算法数学建模
1.岭回归和Lasso回归的基本原理1.1岭回归:岭回归(RidgeRegression)是一种用于共线性数据分析的技术。共线性指的是自变量之间存在高度相关关系。岭回归通过在损失函数中添加一个L2正则项(λ∑j=1nβj2\lambda\sum_{j=1}^{n}\beta_j^2λ∑j=1nβj2)来减小回归系数的大小,从而控制模型的复杂度和防止过拟合。这里的λ\lambdaλ是正则化强度参数。
- 线性回归、岭回归、LASSO回归与弹性网络回归
陈荣昌
还是那句话,只会调用函数是没有办法做统计的,研究理论才是最重要的。RunningregressioninPythonandRdoesn’ttakemorethan3-4linesofcode.Allyouneedtodois,passthevariables,runthescriptandgetthepredictedvalues.Andcongratulations!You’verunyourf
- 多项式回归及岭回归实例
è¤è²çåºå
算法
fromsklearn.preprocessingimportPolynomialFeatures#多项式特征data_X=[]data_Y=[]f=open('price.txt','r')lines=f.readlines()forlineinlines:items=line.strip().split(',')#删除每行首尾的符号,再分割成列表data_X.append(int(items[
- sklearn中一些简单机器学习算法的使用
橘柚jvyou
机器学习sklearn算法
目录前言KNN算法决策树算法朴素贝叶斯算法岭回归算法线性优化算法前言本篇文章会介绍一些sklearn库中简单的机器学习算法如何使用,一些注释已经写在代码中,帮助一些小伙伴入门sklearn库的使用。注意:本篇文章只涉及到如何使用,并不会讲解原理,如果想了解原理的小伙伴请自行搜索其他技术博客或者查看官方文档。KNN算法fromsklearn.datasetsimportload_iris#导入莺尾花
- MATLAB实现岭回归数学建模算法
AI Dog
数学建模\MATLAB算法matlab回归数学建模数据挖掘
岭回归(RidgeRegression)是一种线性回归的扩展,用于处理多重共线性(multicollinearity)的问题。多重共线性是指自变量之间存在高度相关性的情况,这可能导致线性回归模型的不稳定性和过拟合。岭回归通过在损失函数中添加一个正则化项,即岭项(Ridgeterm),来解决多重共线性问题。正则化项的引入有助于限制模型参数的大小,防止它们过度膨胀。岭回归的优化目标是最小化损失函数和正
- 岭回归公式推导
吐泡泡的柠檬
回归
对于最小二乘问题加入常数项,令变量代换,可以写成其中θ是拟合系数。加入常数项,同时,希望拟合参数θ尽可能小,以降低预测值的敏感程度,可得:注:结合起来理解:目标函数是一个凸函数,对目标函数求导,导数等于0的点是最优点:注意:岭回归的推导与介绍,比较全面:https://www.jianshu.com/p/1677d27e08a7
- 统计学习 复习(知识点+习题)
玛卡巴卡_qin
课程学习
复习资料:https://github.com/RuijieZhu94/StatisticalLearning_USTC第一章线性回归1.Fromonetotwo最小二乘课后题有偏/无偏估计加权最小二乘2.Regularization线性回归(二维情况)求解有约束优化问题正则化最小加权二乘不确定答案形式3.BasicFunction核函数岭回归有个关于核函数的推导,但应该不会考4.Bias-var
- 算法模型之回归模型(岭回归Ridge)
rookie-rookie-lu
机器学习回归机器学习线性回归pythonsklearn
线性回归:1.假设模型线性模型和线性关系是不同的,线性关系一定是线性模型,而线性模型不一定是线性关系2.优化算法正规方程正规方程可以比作成一个天才,只需要一次就可以求出各种权重和偏置梯度下降梯度下降算法可以比作一个勤奋努力的普通人,需要不断的迭代和试错3.sklearn实现LinearRegressionLinearRegression使用的是正规方程,正规方程的时间复杂度太大。一般不使用。SGD
- 隐马尔可夫模型【维特比算法】
格兰芬多_未名
机器学习算法人工智能机器学习
机器学习笔记机器学习系列笔记,主要参考李航的《机器学习方法》,见参考资料。第一章机器学习简介第二章感知机第三章支持向量机第四章朴素贝叶斯分类器第五章Logistic回归第六章线性回归和岭回归第七章多层感知机与反向传播【Python实例】第八章主成分分析【PCA降维】第九章隐马尔可夫模型文章目录机器学习笔记一、维特比算法核心思想二、viterbi算法参考资料维特比算法是一种动态规划算法用于寻找最有可
- 奇异值分解(SVD)【详细推导证明】
格兰芬多_未名
机器学习机器学习矩阵分解
机器学习笔记机器学习系列笔记,主要参考李航的《机器学习方法》,见参考资料。第一章机器学习简介第二章感知机第三章支持向量机第四章朴素贝叶斯分类器第五章Logistic回归第六章线性回归和岭回归第七章多层感知机与反向传播【Python实例】第八章主成分分析【PCA降维】第九章隐马尔可夫模型第十章奇异值分解文章目录机器学习笔记一、矩阵的基本子空间二、舒尔分解三、奇异值分解(1)定义(2)证明(3)与四大
- sklearn-线性回归
CHEN的小喵
笔记机器学习
1sklearn中的线性回归sklearn中的线性模型模块是linear_model,我们曾经在学习逻辑回归的时候提到过这个模块。linear_model包含了多种多样的类和函数:普通线性回归,多项式回归,岭回归,LASSO,以及弹性网。2多元线性回归LinearRegression其中右下角的2表示向量的L2范式,也就是我们的损失函数所代表的含义。在L2范式上开平方,就是我们的损失函数。这个式子
- 1 sklearn线性回归
Michael_Flemming
sklearn线性回归机器学习
sklearn线性回归一、普通最小二乘线性回归sklearn.linear_model.LinearRegression小结二、岭回归岭回归分类LASSOsklearn里面一个类对象就是一个模型,直接封装了训练、预测、测试等goon功能。关于具体的算法过程,优化过程…从直接使用角度不需要关心…一、普通最小二乘线性回归sklearn.linear_model.LinearRegression最小二乘
- Intel-ML笔记03 正则化和特征选择
SilentDawn
防止欠/过拟合正则化ragularization.png岭回归(ridgeregression(L2))ridgeregression(L2).pngLassoRegression(L1)LassoRegression(L1).pngElasticNetRegularizationElasticNetRegularization.png特征选择正则化通过缩小特征的“贡献”对特征进行选择特征选择也可
- sklearn岭回归
微小冷
#sklearnsklearn回归人工智能python岭回归
文章目录基本原理sklearn实现基本原理最小二乘法的判定条件是minw∥Xw−y∥22\min_w\VertXw-y\Vert_2^2wmin∥Xw−y∥22其中,minwF(w)\min_wF(w)minwF(w)表示F(w)F(w)F(w)最小时的www;www是拟合参数,x,yx,yx,y是变量。对于线性问题,可通过对www求导,得到F(w)F(w)F(w)极值处的www,具体表达式为
- 多元线性回归模型(公式推导+举例应用)
Nie同学
机器学习线性回归算法回归
文章目录引言模型表达式均方误差和优化目标最小二乘法广义线性模型范数XTX\mathbf{X^TX}XTX不是满秩情况下,回归问题的解决方案岭回归套索回归弹性网络回归(ElasticNet)XTX\mathbf{X^TX}XTX不是满秩情况下,二分类问题的解决方案对数几率回归黑塞矩阵结论实验分析(一)实验分析(二)实验分析(三)引言多元线性回归是回归分析中的一种复杂模型,它考虑了多个输入变量对输出变
- 项目分享:机器学习电影票房分析与预测系统
switch_mooood
python
1.项目简介票房作为衡量电影能否盈利的重要指标受诸多因素共同作用影响且其影响机制较为复杂,电影票房的准确预测是比较有难度的。本项目利用某开源电影数据集构建票房预测模型,首先将影响电影票房的因素如电影类型、上映档期、导演、演员等量化处理并进行可视化分析。采用多元线性回归模型、决策树回归模型、Ridgeregression岭回归模型、Lassoregression岭回归模型和随机森林回归模型实现票房的
- Spark回归分析与特征工程
晓之以理的喵~~
Sparkspark回归大数据
回归分析是统计学和机器学习中的一个重要分支,用于建立因变量与自变量之间的关系模型。在大数据领域,ApacheSpark为回归分析提供了强大的工具和库,以处理大规模数据集。本文将深入探讨如何使用Spark进行回归分析以及如何进行特征工程,以提高模型性能。Spark中的回归分析回归分析是一种用于建立和解释因变量与自变量之间关系的统计方法。在Spark中,可以使用不同的回归算法,如线性回归、岭回归、La
- 机器学习算法分类
学了忘了学
监督学习目标值:类别--分类问题目标值:连续型的数据--回归问题分类模型k近邻算法,贝叶斯分类,决策树与随机森林,逻辑回归,SVM,回归模型线性回归,岭回归无监督学习目标值:无聚类模型k-means机器学习开发流程获取数据数据清洗特征工程(特征值与目标值)机器学习算法训练模型评估(不好则重新开始)分类算法K近邻-KNN用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数
- 2023APMCM亚太数学建模C题 - 中国新能源汽车的发展趋势(1)
想找对象的椰子在写文章
数学建模汽车论文笔记论文阅读大数据学习能源
摘要本文主要研究了中国新能源汽车的影响及其发展趋势,利用皮尔逊相关系数和多元线性回归研究了影响中国新能源汽车发展的主要因素;用ARIMA时间序列对未来十年新能源做出一定预测;建立随机森林回归模型对新能源汽车对全球传统汽车的影响进行了分析;通过岭回归分析了各国政策对中国新能源汽车发展的影响,最后建立碳排放因子模型对新能源汽车对生态环境的效益处进行分析。针对问题1:首先我们选取近十年新能源汽车的销售量
- Scikit-Learn线性回归(五)
对许
#人工智能与机器学习#Pythonscikit-learn线性回归python
Scikit-Learn线性回归五:岭回归与Lasso回归1、误差与模型复杂度2、正则化3、Scikit-Learn岭(Ridge)回归4、Scikit-LearnLasso回归1、误差与模型复杂度在第二篇文章Scikit-Learn线性回归(二)中,我们已经给出了过拟合与模型泛化的概念并使用案例进行了验证在机器学习中,我们通常会将数据划分为两部分:一部分用来构建模型,然后另一部分用来检验模型的效
- Datawhale零基础入门NLP赛事 - Task3 基于机器学习的文本分类
AugBoost
我们构建了基于词袋模型和TF-IDF的特征提取器,随后构建了岭回归的分类器,并通过更改其各项参数观察变化,最后,使用逻辑回归作为分类器,发现效果大不如岭回归分类器。具体分析随后附上。
- 数据挖掘案例
孤城暮雨@
数据挖掘人工智能大数据mysql数据仓库pythonpycharm
利用Pycharm连接MySQL,利用Python代码通过提取数据库的内容,将其封装到本地,为训练模型提供了源数据支持,利用机器学习算法岭回归对数据进行线性回归,进而得到最终的预测结果。(1)创建预测表CREATETABLE`ads_cscd_predict_profit_i_y`( `fc_date`textCOLLATEutf8mb4_unicode_ci, `fc_net_profit`
- 机器学习&深度学习面试笔记
卡卡南安
机器学习机器学习深度学习笔记
机器学习&深度学习面试笔记机器学习Q.在线性回归中,如果自变量之间存在多重共线性,会导致什么问题?如何检测和处理多重共线性?Q.什么是岭回归(RidgeRegression)和Lasso回归(LassoRegression)?它们与普通线性回归之间的区别?Q.逻辑回归与线性回归有什么区别?Q.什么是逻辑回归的目标函数(损失函数)?Q.如何处理多分类问题?Q.L1和L2正则化有什么区别?Q.分类模型
- 应用回归分析(7):岭回归、SST
Oasis of the World
应用回归分析及spss部分使用回归数据挖掘人工智能
证明总偏差平方和=回归平方和+残差平方和_总偏差平方和残差平方和回归平方和-CSDN博客7.1简介岭回归思想:使得的值最小!!岭回归式为了解决多重共线性问题想法:当自变量存在多重共线性时,时,设想加上一个正常数矩阵,,那么接近奇异值的程度就会变小。注意可以标准化,也可以不标准化。如果也标准化,则是标准化岭回归估计。7.2岭回归的性质先知:均方误差:注意均方误差中只有是随机变量哦!!!,相当于常数。
- 机器学习——线性模型
风月雅颂
机器学习-基于sklearn机器学习人工智能pythonscikit-learn
【说明】文章内容来自《机器学习——基于sklearn》,用于学习记录。若有争议联系删除。线性模型是在实践中广泛应用的一种模型,它利用输入特征的线性函数进行预测。1、线性回归简介在机器学习领域,常见的线性模型有线性回归、逻辑回归、岭回归等。其中,线性回归是利用数理统计中的回归分析来确定两种或两种以上变量相互依赖的定量关系的一种统计分析方法。线性回归有简单线性回归和多元线性回归两个主要类型。简单线性回
- VMware Workstation 11 或者 VMware Player 7安装MAC OS X 10.10 Yosemite
iwindyforest
vmwaremac os10.10workstationplayer
最近尝试了下VMware下安装MacOS 系统,
安装过程中发现网上可供参考的文章都是VMware Workstation 10以下, MacOS X 10.9以下的文章,
只能提供大概的思路, 但是实际安装起来由于版本问题, 走了不少弯路, 所以我尝试写以下总结, 希望能给有兴趣安装OSX的人提供一点帮助。
写在前面的话:
其实安装好后发现, 由于我的th
- 关于《基于模型驱动的B/S在线开发平台》源代码开源的疑虑?
deathwknight
JavaScriptjava框架
本人从学习Java开发到现在已有10年整,从一个要自学 java买成javascript的小菜鸟,成长为只会java和javascript语言的老菜鸟(个人邮箱:
[email protected])
一路走来,跌跌撞撞。用自己的三年多业余时间,瞎搞一个小东西(基于模型驱动的B/S在线开发平台,非MVC框架、非代码生成)。希望与大家一起分享,同时有许些疑虑,希望有人可以交流下
平台
- 如何把maven项目转成web项目
Kai_Ge
mavenMyEclipse
创建Web工程,使用eclipse ee创建maven web工程 1.右键项目,选择Project Facets,点击Convert to faceted from 2.更改Dynamic Web Module的Version为2.5.(3.0为Java7的,Tomcat6不支持). 如果提示错误,可能需要在Java Compiler设置Compiler compl
- 主管???
Array_06
工作
转载:http://www.blogjava.net/fastzch/archive/2010/11/25/339054.html
很久以前跟同事参加的培训,同事整理得很详细,必须得转!
前段时间,公司有组织中高阶主管及其培养干部进行了为期三天的管理训练培训。三天的课程下来,虽然内容较多,因对老师三天来的课程内容深有感触,故借着整理学习心得的机会,将三天来的培训课程做了一个
- python内置函数大全
2002wmj
python
最近一直在看python的document,打算在基础方面重点看一下python的keyword、Build-in Function、Build-in Constants、Build-in Types、Build-in Exception这四个方面,其实在看的时候发现整个《The Python Standard Library》章节都是很不错的,其中描述了很多不错的主题。先把Build-in Fu
- JSP页面通过JQUERY合并行
357029540
JavaScriptjquery
在写程序的过程中我们难免会遇到在页面上合并单元行的情况,如图所示
如果对于会的同学可能很简单,但是对没有思路的同学来说还是比较麻烦的,提供一下用JQUERY实现的参考代码
function mergeCell(){
var trs = $("#table tr");
&nb
- Java基础
冰天百华
java基础
学习函数式编程
package base;
import java.text.DecimalFormat;
public class Main {
public static void main(String[] args) {
// Integer a = 4;
// Double aa = (double)a / 100000;
// Decimal
- unix时间戳相互转换
adminjun
转换unix时间戳
如何在不同编程语言中获取现在的Unix时间戳(Unix timestamp)? Java time JavaScript Math.round(new Date().getTime()/1000)
getTime()返回数值的单位是毫秒 Microsoft .NET / C# epoch = (DateTime.Now.ToUniversalTime().Ticks - 62135
- 作为一个合格程序员该做的事
aijuans
程序员
作为一个合格程序员每天该做的事 1、总结自己一天任务的完成情况 最好的方式是写工作日志,把自己今天完成了什么事情,遇见了什么问题都记录下来,日后翻看好处多多
2、考虑自己明天应该做的主要工作 把明天要做的事情列出来,并按照优先级排列,第二天应该把自己效率最高的时间分配给最重要的工作
3、考虑自己一天工作中失误的地方,并想出避免下一次再犯的方法 出错不要紧,最重
- 由html5视频播放引发的总结
ayaoxinchao
html5视频video
前言
项目中存在视频播放的功能,前期设计是以flash播放器播放视频的。但是现在由于需要兼容苹果的设备,必须采用html5的方式来播放视频。我就出于兴趣对html5播放视频做了简单的了解,不了解不知道,水真是很深。本文所记录的知识一些浅尝辄止的知识,说起来很惭愧。
视频结构
本该直接介绍html5的<video>的,但鉴于本人对视频
- 解决httpclient访问自签名https报javax.net.ssl.SSLHandshakeException: sun.security.validat
bewithme
httpclient
如果你构建了一个https协议的站点,而此站点的安全证书并不是合法的第三方证书颁发机构所签发,那么你用httpclient去访问此站点会报如下错误
javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path bu
- Jedis连接池的入门级使用
bijian1013
redisredis数据库jedis
Jedis连接池操作步骤如下:
a.获取Jedis实例需要从JedisPool中获取;
b.用完Jedis实例需要返还给JedisPool;
c.如果Jedis在使用过程中出错,则也需要还给JedisPool;
packag
- 变与不变
bingyingao
不变变亲情永恒
变与不变
周末骑车转到了五年前租住的小区,曾经最爱吃的西北面馆、江西水饺、手工拉面早已不在,
各种店铺都换了好几茬,这些是变的。
三年前还很流行的一款手机在今天看起来已经落后的不像样子。
三年前还运行的好好的一家公司,今天也已经不复存在。
一座座高楼拔地而起,
- 【Scala十】Scala核心四:集合框架之List
bit1129
scala
Spark的RDD作为一个分布式不可变的数据集合,它提供的转换操作,很多是借鉴于Scala的集合框架提供的一些函数,因此,有必要对Scala的集合进行详细的了解
1. 泛型集合都是协变的,对于List而言,如果B是A的子类,那么List[B]也是List[A]的子类,即可以把List[B]的实例赋值给List[A]变量
2. 给变量赋值(注意val关键字,a,b
- Nested Functions in C
bookjovi
cclosure
Nested Functions 又称closure,属于functional language中的概念,一直以为C中是不支持closure的,现在看来我错了,不过C标准中是不支持的,而GCC支持。
既然GCC支持了closure,那么 lexical scoping自然也支持了,同时在C中label也是可以在nested functions中自由跳转的
- Java-Collections Framework学习与总结-WeakHashMap
BrokenDreams
Collections
总结这个类之前,首先看一下Java引用的相关知识。Java的引用分为四种:强引用、软引用、弱引用和虚引用。
强引用:就是常见的代码中的引用,如Object o = new Object();存在强引用的对象不会被垃圾收集
- 读《研磨设计模式》-代码笔记-解释器模式-Interpret
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 解释器(Interpreter)模式的意图是可以按照自己定义的组合规则集合来组合可执行对象
*
* 代码示例实现XML里面1.读取单个元素的值 2.读取单个属性的值
* 多
- After Effects操作&快捷键
cherishLC
After Effects
1、快捷键官方文档
中文版:https://helpx.adobe.com/cn/after-effects/using/keyboard-shortcuts-reference.html
英文版:https://helpx.adobe.com/after-effects/using/keyboard-shortcuts-reference.html
2、常用快捷键
- Maven 常用命令
crabdave
maven
Maven 常用命令
mvn archetype:generate
mvn install
mvn clean
mvn clean complie
mvn clean test
mvn clean install
mvn clean package
mvn test
mvn package
mvn site
mvn dependency:res
- shell bad substitution
daizj
shell脚本
#!/bin/sh
/data/script/common/run_cmd.exp 192.168.13.168 "impala-shell -islave4 -q 'insert OVERWRITE table imeis.${tableName} select ${selectFields}, ds, fnv_hash(concat(cast(ds as string), im
- Java SE 第二讲(原生数据类型 Primitive Data Type)
dcj3sjt126com
java
Java SE 第二讲:
1. Windows: notepad, editplus, ultraedit, gvim
Linux: vi, vim, gedit
2. Java 中的数据类型分为两大类:
1)原生数据类型 (Primitive Data Type)
2)引用类型(对象类型) (R
- CGridView中实现批量删除
dcj3sjt126com
PHPyii
1,CGridView中的columns添加
array(
'selectableRows' => 2,
'footer' => '<button type="button" onclick="GetCheckbox();" style=&
- Java中泛型的各种使用
dyy_gusi
java泛型
Java中的泛型的使用:1.普通的泛型使用
在使用类的时候后面的<>中的类型就是我们确定的类型。
public class MyClass1<T> {//此处定义的泛型是T
private T var;
public T getVar() {
return var;
}
public void setVa
- Web开发技术十年发展历程
gcq511120594
Web浏览器数据挖掘
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- openSession()与getCurrentSession()区别:
hetongfei
javaDAOHibernate
来自 http://blog.csdn.net/dy511/article/details/6166134
1.getCurrentSession创建的session会和绑定到当前线程,而openSession不会。
2. getCurrentSession创建的线程会在事务回滚或事物提交后自动关闭,而openSession必须手动关闭。
这里getCurrentSession本地事务(本地
- 第一章 安装Nginx+Lua开发环境
jinnianshilongnian
nginxluaopenresty
首先我们选择使用OpenResty,其是由Nginx核心加很多第三方模块组成,其最大的亮点是默认集成了Lua开发环境,使得Nginx可以作为一个Web Server使用。借助于Nginx的事件驱动模型和非阻塞IO,可以实现高性能的Web应用程序。而且OpenResty提供了大量组件如Mysql、Redis、Memcached等等,使在Nginx上开发Web应用更方便更简单。目前在京东如实时价格、秒
- HSQLDB In-Process方式访问内存数据库
liyonghui160com
HSQLDB一大特色就是能够在内存中建立数据库,当然它也能将这些内存数据库保存到文件中以便实现真正的持久化。
先睹为快!
下面是一个In-Process方式访问内存数据库的代码示例:
下面代码需要引入hsqldb.jar包 (hsqldb-2.2.8)
import java.s
- Java线程的5个使用技巧
pda158
java数据结构
Java线程有哪些不太为人所知的技巧与用法? 萝卜白菜各有所爱。像我就喜欢Java。学无止境,这也是我喜欢它的一个原因。日常
工作中你所用到的工具,通常都有些你从来没有了解过的东西,比方说某个方法或者是一些有趣的用法。比如说线程。没错,就是线程。或者确切说是Thread这个类。当我们在构建高可扩展性系统的时候,通常会面临各种各样的并发编程的问题,不过我们现在所要讲的可能会略有不同。
- 开发资源大整合:编程语言篇——JavaScript(1)
shoothao
JavaScript
概述:本系列的资源整合来自于github中各个领域的大牛,来收藏你感兴趣的东西吧。
程序包管理器
管理javascript库并提供对这些库的快速使用与打包的服务。
Bower - 用于web的程序包管理。
component - 用于客户端的程序包管理,构建更好的web应用程序。
spm - 全新的静态的文件包管
- 避免使用终结函数
vahoa.ma
javajvmC++
终结函数(finalizer)通常是不可预测的,常常也是很危险的,一般情况下不是必要的。使用终结函数会导致不稳定的行为、更差的性能,以及带来移植性问题。不要把终结函数当做C++中的析构函数(destructors)的对应物。
我自己总结了一下这一条的综合性结论是这样的:
1)在涉及使用资源,使用完毕后要释放资源的情形下,首先要用一个显示的方