OpenVINO开发教程之八 – 道路分割

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

本文转自:opencv学堂

模型介绍

基于OpenVINO预训练模块中的道路分割模型,实现像素级别的图像分割,把像素划分为如下四个类别

  • 背景

  • 道路

  • 车道线

  • 标志

输入数据

要求输入图像BGR通道顺序的彩色图像,blob的大小为

BCHW = Nx3x512x896,其中

  • B表示批次数目

  • C表示图像通道

  • H表示图像高度

  • W表示图像宽度

输出数据

输出数据是四通道blob对象,格式为BCHW

其中C=4表示输出的四个分类得分,H表示feature map的高度, W表示featuremap的宽度,对输出blob进行解析可以得到输出的分割mask,对mask进行配色之后,得到最终的输出结果。

代码实现

1. 基于OpenVINO SDK开发完成演示程序,模型加载与创建推断请求的代码如下:

C++版本

    // 加载道路分割网络
    CNNNetReader network_reader;
    network_reader.ReadNetwork(model_xml);
    network_reader.ReadWeights(model_bin);

    // 请求网络输入与输出信息
    auto network = network_reader.getNetwork();
    InferenceEngine::InputsDataMap input_info(network.getInputsInfo());
    InferenceEngine::OutputsDataMap output_info(network.getOutputsInfo());

    // 设置输入精度
    InputInfo::Ptr& input = input_info.begin()->second;
    auto inputName = input_info.begin()->first;
    input->setPrecision(Precision::U8);
    input->getInputData()->setLayout(Layout::NCHW);

    /** 设置输出精度与内容**/
    DataPtr& output = output_info.begin()->second;
    auto outputName = output_info.begin()->first;
    const SizeVector outputDims = output->getTensorDesc().getDims();
    output->setPrecision(Precision::FP32);
    output->setLayout(Layout::NCHW);

    size_t N = outputDims[0];
    size_t C = outputDims[1];
    size_t H = outputDims[2];
    size_t W = outputDims[3];
    size_t image_stride = W*H*C;

    // 创建可执行网络对象
    auto executable_network = plugin.LoadNetwork(network, {});

    // 请求推断图
    InferRequest::Ptr async_infer_request_next = executable_network.CreateInferRequestPtr();
    InferRequest::Ptr async_infer_request_curr = executable_network.CreateInferRequestPtr();

Python版本

# 加载IR
log.info("Reading IR...")
net = IENetwork(model=model_xml, weights=model_bin)

# 获取输入输出层
input_blob = next(iter(net.inputs))
out_blob = next(iter(net.outputs))
log.info("Loading IR to the plugin...")

# 创建可执行网络
exec_net = plugin.load(network=net, num_requests=2)
# Read and pre-process input image
n, c, h, w = net.inputs[input_blob].shape
del net

# 开始视频文件或者摄像头
cap = cv2.VideoCapture("D:/images/video/CarsDrivingUnderBridge.mp4")
# cap = cv2.VideoCapture(0)

cur_request_id = 0
next_request_id = 1

log.info("Starting inference in async mode...")
log.info("To switch between sync and async modes press Tab button")
log.info("To stop the demo execution press Esc button")
is_async_mode = True
render_time = 0

# 读取视频流
ret, frame = cap.read()
initial_w = cap.get(3)
initial_h = cap.get(4)

2. 检查异步返回与解析输出数据的代码如下

C++版本

if (OK == async_infer_request_curr->Wait(IInferRequest::WaitMode::RESULT_READY)) {
    const Blob::Ptr output_blob = async_infer_request_curr->GetBlob(outputName);
    const float* output_data = output_blob->buffer().as();

    Mat result = Mat::zeros(Size(W, H), CV_8UC3);
    for (size_t h = 0; h < H; ++h) {
        for (size_t w = 0; w < W; ++w) {
            int index = 0;
            float max = -100;
            for (size_t ch = 0; ch < C; ++ch) {
                float data = output_data[W * H * ch + W * h + w];
                if (data > max) {
                    index = ch;
                    max = data;
                }
            }
            result.at(h, w) = lut[index];
        }
    }

    // 计算FPS
    auto t1 = std::chrono::high_resolution_clock::now();
    ms dtime = std::chrono::duration_cast(t1 - t0);
    std::ostringstream out;
    out << "Detection time  : " << std::fixed << std::setprecision(2) << dtime.count()
        << " ms (" << 1000.f / dtime.count() << " fps)";
    resize(result, result, curr_frame.size());
    putText(curr_frame, out.str(), Point(20, 20), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 0, 255), 2, 8);
    addWeighted(result, 0.2, curr_frame, 0.8, 0, curr_frame);
}

Python版本

if exec_net.requests[cur_request_id].wait(-1) == 0:
    # 解析mask输出
    res = exec_net.requests[cur_request_id].outputs[out_blob]
    # 降维
    res = np.squeeze(res, 0)
    # 矩阵转置
    res = res.transpose((1, 2, 0))
    # 获取类别 index,
    # 0 - 表示背景,
    # 1 - 道路,
    # 2 - 车道线 ,
    # 3 - 交通标志
    res = np.argmax(res, 2)
    hh, ww = res.shape
    mask = np.zeros((hh, ww, 3), dtype=np.uint8)
    mask[np.where(res > 0)] = (0, 255, 255)
    mask[np.where(res > 1)] = (255, 0, 255)

    # 显示mask
    cv2.imshow("segmentation mask", mask)
    mask = cv2.resize(mask, dsize=(frame.shape[1], frame.shape[0]))
    # print("final shape : ", res.shape)
    frame = cv2.addWeighted(mask, 0.4, frame, 0.6, 0)
    inf_end = time.time()
    det_time = inf_end - inf_start

    # 显示绘制文本
    inf_time_message = "Inference time: {:.3f} ms, FPS:{:.3f}".format(det_time * 1000, 1000 / (det_time * 1000 + 0.1))
    render_time_message = "OpenCV rendering time: {:.3f} ms".format(render_time * 1000)
    async_mode_message = "Async mode is on. Processing request {}".format(cur_request_id) if is_async_mode else \
        "Async mode is off. Processing request {}".format(cur_request_id)

    cv2.putText(frame, inf_time_message, (15, 15), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 0), 1)
    cv2.putText(frame, render_time_message, (15, 30), cv2.FONT_HERSHEY_COMPLEX, 0.5, (10, 10, 200), 1)
    cv2.putText(frame, async_mode_message, (10, int(initial_h - 20)), cv2.FONT_HERSHEY_COMPLEX, 0.5,
                (10, 10, 200), 1)

运行效果

输入视频帧

OpenVINO开发教程之八 – 道路分割_第1张图片

道路分割模型输出mask

OpenVINO开发教程之八 – 道路分割_第2张图片

最终显示效果

OpenVINO开发教程之八 – 道路分割_第3张图片

下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲

在「小白学视觉」公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲

在「小白学视觉」公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~

OpenVINO开发教程之八 – 道路分割_第4张图片

OpenVINO开发教程之八 – 道路分割_第5张图片

你可能感兴趣的:(人工智能,计算机视觉,opencv,图像识别,深度学习)