- 磁盘性能评价指标—IOPS和吞吐量
???? ??? Frank
一、磁盘I/O的概念I/O的概念,从字义来理解就是输入输出。操作系统从上层到底层,各个层次之间均存在I/O。比如,CPU有I/O,内存有I/O,VMM有I/O,底层磁盘上也有I/O,这是广义上的I/O。通常来讲,一个上层的I/O可能会产生针对磁盘的多个I/O,也就是说,上层的I/O是稀疏的,下层的I/O是密集的。磁盘的I/O,顾名思义就是磁盘的输入输出。输入指的是对磁盘写入数据,输出指的是从磁盘读
- 理论+实践,一文带你读懂线性回归的评价指标
木东居士
关于作者:饼干同学,某人工智能公司交付开发工程师/建模科学家。专注于AI工程化及场景落地,希望和大家分享成长中的专业知识与思考感悟。0x00前言:本篇内容是线性回归系列的第三篇。在《模型之母:简单线性回归&最小二乘法》、《模型之母:简单线性回归&最小二乘法》中我们学习了简单线性回归、最小二乘法,并完成了代码的实现。在结尾,我们抛出了一个问题:在之前的kNN算法(分类问题)中,使用分类准确度来评价算
- 点云从入门到精通技术详解100篇-点云特征学习模型及其在配准中的应用
格图素书
学习
目录前言应用前景国内外研究现状点云特征提取算法研究现状点云配准算法研究现状相关理论基础2.1深度学习2.1.1深度学习概述2.1.2自编码器2.1.3稀疏编码2.1.4受限玻尔兹曼机2.2多层感知机2.2.1多层感知机概述2.2.2感知器与多层感知机2.2.3多层感知机的训练2.3点云配准方法2.3.1无点对应关系的点云配准方法2.3.2基于对应关系的点云配准方法2.4评价指标2.4.1点云配准评
- 机器学习实战----波士顿房价预测模型
永远偷渡不了的非洲人
机器学习机器学习sklearnpython
波士顿房价模型预测是一个回归问题,可以采用r2_score方法来作为评价指标。importnumpyasnpimportpandasaspdfromsklearn.metricsimportr2_score#从sklearn的数据库中导入波士顿房产数据fromsklearn.datasetsimportload_bostonfromsklearn.model_selectionimporttrai
- 平均精度(Average Precision,AP)以及AP50、AP75、APs、APm、APl、Box AP、Mask AP等不同阈值和细分类别的评估指标说明
fydw_715
深度学习基础分类数据挖掘人工智能
平均精度(AveragePrecision,AP)是信息检索领域和机器学习评价指标中常用的一个衡量方法,特别广泛用于目标检测任务。它在评估模型的表现时结合了准确率(Precision)和召回率(Recall),为我们提供一个综合性的评估指标。关键概念Precision(准确率):精确率表示在模型预测为正例的所有样本中,实际上为正例的比例。它的计算公式为:Precision=TruePositive
- 海云安实力入选“未来新锐力量TOP30”企业
海云安
人工智能大数据
近日,由网络安全产业资讯媒体安全419主办的“FP30”(FuturePower30,未来新锐力量TOP30)计划结果正式出炉,海云安凭借领先的技术优势和企业综合实力成功入选“FP30”(FuturePower30,未来新锐力量TOP30)计划成员企业。本次“FP30”计划推出后受到广泛关注,报名期间共收到来自我国网络安全行业上百家企业的自荐。根据计划设置的企业评价指标,在经过专家顾问团的多轮严肃
- 显著性目标检测评价指标Smeasure, wFmeasure, MAE, adpEm, meanEm, maxFm
一只懒洋洋
人工智能机器学习
一、评价指标:Smeasure(StructureMeasure)结构度量是一种综合评估指标,用于评估预测的分割结果与真实分割之间的结构相似性。它考虑了分割结果的边缘连通性、区域完整性和边界偏移等因素,值越接近1表示分割结果与真实分割结构越相似。wFmeasure(WeightedF-measure)加权F-measure是精度和召回率的加权平均值,其中精度衡量了分割结果中正确分类的像素数量,而召
- 1.深度学习基础-模型评估指标
alstonlou
深度学习指南深度学习人工智能机器学习算法python
模型评估指标针对不同类型的任务,需要通过不同的模型评价指标进行评价,在实际应用中,可能需要结合具体任务和需求选择合适的评估方法。有监督学习回归任务回归任务模型的评估主要通过误差和拟合优度来进行,常用的指标包括平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)和决定系数(R²)。在回归任务中,我们主要关注模型预测值与实际值之间的差异大小以及模型对数据整体变化的解释能力。以下是具体介绍
- 09基于粒子群优化BP神经网络数据回归预测算法PSO-BP【附Matlab源码】只讲代码不讲原理
机器不会学习CSJ
数据回归专栏算法神经网络回归机器学习matlab
文章目录一、粒子群优化算法二、BP神经网络核心代码三、完整过程1、读取数据2、划分数据3、数据归一化4、计算优化节点数量5、粒子群优化参数初始化6、提取最优初始权值和阈值通过粒子群优化的最佳权重矩阵7、训练网络和预测数据结合前面BP设置网络参数代码8、绘图和计算评价指标三、实验结果四、获取完整代码和数据一、粒子群优化算法核心计算公式%%参数初始化c1=4.494;%学习因子c2=4.494;%学习
- 基于熵权法对Topsis模型的修正
钰见梵星
数学建模算法
基于熵权法对Topsis模型的修正有n个要评价的对象,m个评价指标的标准化矩阵,可以使用层次分析法给这m个评价指标确定权重∑j=1mωj=1\sum_{j=1}^m{\omega_j}=1j=1∑mωj=1层次分析法最大的缺点:判断矩阵的确定依赖于专家,如果专家的判断存在主观性的话,会对结果产生很大的影响。(主观性太强)熵权法是一种客观赋权方法依据的原理:指标的变异程度越小,所反映的信息量也越少,
- 面试:正确率能很好的评估分类算法吗
华农DrLai
分类数据挖掘人工智能机器学习深度学习大数据算法
正确率(accuracy)正确率是我们最常见的评价指标,accuracy=(TP+TN)/(P+N),正确率是被分对的样本数在所有样本数中的占比,通常来说,正确率越高,分类器越好。不同算法有不同特点,在不同数据集上有不同的表现效果,根据特定的任务选择不同的算法。如何评价分类算法的好坏,要做具体任务具体分析。对于决策树,主要用正确率去评估,但是其他算法,只用正确率能很好的评估吗?答案是否定的。正确率
- 目标检测中AP50 AP75 APs APm APl 含义
lqjun0827
深度学习机器学习目标检测目标跟踪人工智能
目标检测中AP50AP75APsAPmAPl含义介绍介绍在目标检测领域,我们经常会遇到一些评价指标,这些指标有助于衡量模型的性能。让我来解释一下这些概念:AP(AveragePrecision):平均精度,用于衡量目标检测模型的准确性。它考虑了不同置信度阈值下的精度,并计算出一个平均值。通常,我们使用不同的阈值(例如0.5、0.75等)来计算AP。AR(AverageRecall):平均召回率,表
- AI面试第六弹(评价指标)
加油11dd23
一、分类问题指标分类问题的评价指标多是基于以下混淆矩阵·真实值是positive,模型认为是positive的数量(TruePositive=TP)·真实值是positive,模型认为是negative的数量(FalseNegative=FN):这就是统计学上的第二类错误(TypeIIError)·真实值是negative,模型认为是positive的数量(FalsePositive=FP):这就
- matlab搭建IAE,ISE,ITAE性能指标
hasee_z6
MATLABmatlab
目录前言准备IAEISEITAE前言最近在使用matlab搭建控制系统性能评价指标模型,记录一下准备MATLABR2020IAEIAE函数表达式如下所示:IAE函数模型如下所示:ISEISE函数表达式如下所示:ISE函数模型如下所示:其中,MathFunction需要选择square。ITAEITAE函数表达式如下所示:ITAE函数模型如下所示:Clock填入仿真时间,Divide填入乘法,也就是
- 多元回归分析 | LASSO多输入单输出预测(Matlab完整程序)
前程算法屋
多元回归分析(Matlab)多元回归分析LASSO多输入单输出Matlab完整程序
多元回归分析|LASSO多输入单输出预测(Matlab完整程序)目录多元回归分析|LASSO多输入单输出预测(Matlab完整程序)预测结果评价指标基本介绍程序设计预测结果评价指标LASSO回归训练集平均绝对误差MAE:1.7669训练集平均相对误差MAPE:0.051742训练集均方根误差MSE:2.2747训练集均方根误差RMSE:0.068171验证集平均绝对误差MAE:2.0011验证集平
- 论文阅读:《Deep Learning-Based Human Pose Estimation: A Survey》——Part 1:2D HPE
自信且放光芒66
深度学习论文阅读深度学习人工智能
目录人体姿态识别概述论文框架HPE分类人体建模模型二维单人姿态估计回归方法目前发展优化基于热图的方法基于CNN的几个网络利用身体结构信息提供构建HPE网络视频序列中的人体姿态估计2D多人姿态识别方法自上而下自下而上2DHPE总结数据集和评估指标2DHPE数据集2DHPE评价指标2DHPE方法性能的比较单人2DHPE多人2DHPE未来展望人体姿态识别概述应用模块:人机交互、运动分析、增强现实、虚拟现
- Python实现熵权法:客观求指标数据的权重
乌漆帅黑
python开发语言算法
介绍:熵权法(EntropyWeightMethod)是一种常用的多指标权重确定方法,用于评价指标之间的重要程度。它基于信息熵理论,通过计算指标数据的熵值和权重,实现客观、科学地确定指标权重,以辅助决策分析和多指标优化问题的解决。本文将介绍熵权法的基本原理,并提供Python编程语言的实现过程及示例代码,帮助理解和应用熵权法。目录1.数据准备2.计算指标熵值3.计算指标权重4.示例应用5.完整代码
- 推荐系统实践——第一章学习
欠我的都给我吐出来
今天开始阅读和学习《推荐系统实践》,希望和你一起学习一起成长,利用每一天,让自己成长成梦想的样子。阅读这本书的初衷很简单,增加自己在机器学习方面的应用涉猎程度。这本书据说很适合作为了解推荐系统在业界的应用情况和主要算法。按照数据分类的方法,每一章都根据一种用户的行为数据去探讨可以使用的算法,并且比较算法之间性能的差异。第一章主要是介绍了推荐系统在各个领域的应用以及推荐系统业界常用的评价指标。个性化
- 四、机器学习基础概念介绍
ITS_Oaij
脑电机器学习机器学习人工智能
四、机器学习基础概念介绍1_机器学习基础概念机器学习分类1.1有监督学习1.2无监督学习2_有监督机器学习—常见评估方法数据集的划分2.1留出法2.2校验验证法(重点方法)简单交叉验证K折交叉验证(单独流出测试集)(常用方法/Sklearn的默认方法)k折交叉验证(不单独留出测试集)留一法交叉验证Subject-wise交叉验证2.3bootstrap自助法3_有监督机器学习—学习评价指标3.1准
- 【初中生讲机器学习】6. 分类算法中常用的模型评价指标有哪些?here!
Geeker · LStar
人工智能机器学习算法机器学习人工智能分类算法评价指标监督学习
创建时间:2024-02-07最后编辑时间:2024-02-09作者:Geeker_LStar你好呀~这里是Geeker_LStar的人工智能学习专栏,很高兴遇见你~我是Geeker_LStar,一名初三学生,热爱计算机和数学,我们一起加油~!⭐(●’◡’●)⭐那就让我们开始吧!前面已经讲了两个分类算法(SVM&朴素贝叶斯),其中在【初中生讲机器学习】4.支持向量机算法怎么用?一个实例带你看懂!中
- Tensorflow2.0 评价模型复杂度:参数量、FLOPs 和 MACC 计算
cofisher
深度学习PHM项目实战--建模篇tensorflow深度学习卷积python
文章目录项目介绍代码实现:对于迁移学习网络(复杂)1、迁移学习不带分类层的简化版MobileNetV2网络2、查看网络结构3、提取需要分析的层4、计算FLOPs和MACC代码实现:对于自编写网络(简单)1、导入网络2、查看网络结构3、提取需要分析的层4、计算FLOPs和MACC项目介绍在论文写作时,我们经常会对所提出模型的复杂度进行分析,主要用到的评价指标包括参数量、FLOPs和MACC,它们的计
- 基于卷积神经网络-最小二乘支持向量机CNN-LSSVM回归预测,多变量输入模型,matlab代码,要求2019及以上版本。评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方
智能算法及其模型预测
cnn支持向量机回归
%%清空环境变量warningoff%关闭报警信息closeall%关闭开启的图窗clear%清空变量clc%清空命令行%%导入数据P_train=xlsread('data','trainingset','B2:G191')';T_train=xlsread('data','trainingset','H2:H191')';%测试集——44个样本P_test=xlsread('data','te
- 层次分析法(附实例)
陌雨’
数学建模
层次分析法-AHP问题:选择一部适合自己的手机一、确定评价对象与评价指标评价对象评价指标二、确定打分比较矩阵两两比较得到比较矩阵判断比较矩阵是否能通过一致性检验得分向量归一化处理求解得分向量打分矩阵模型评价优点系统性的分析方法简洁实用的决策方法所需定量数据信息较少缺点不能为决策提供新方案定量数据较少,定性成分多,不易令人信服指标过多时,数据统计量大,且权重难以确定特征值和特征向量的精确求法比较复杂
- 【推荐系统】召回模型线下评价指标
sdbhewfoqi
推荐系统
目录HitRate(HR)PrecisionRecallNDCG常用的评价标准:第一类是线上评测,比如通过点击率、网站流量、A/Btest等判断。这类评价标准在这里就不细说了,因为它们并不能参与到线下训练模型和选择模型的过程当中。第二类是线下评测。评测标准很多,我挑几个常用的。我就拿给用户推荐阅读相关链接来举例好了。HitRate(HR)HitRate(HR)所以到底是哪个????一说:https
- YOLOv8-seg 分割代码详解(三)Val
秋山丶雪绪
YOLOpython机器学习计算机视觉深度学习
前言YOLOv8-seg分割代码详解(一)PredictYOLOv8-seg分割代码详解(二)TrainYOLOv8-seg分割代码详解(三)Val 本文主要以源码+注释为主,可以了解YOLOv8计算评价指标的具体实现方法。模型原始输出preds=model(batch['img'],augment=augment)preds:(list:2)0:(Tensor:(b,4+cls_n+32,an
- WOA-CNN-BiLSTM-Attention鲸鱼算法优化卷积-长短期记忆神经网络结合注意力机制的数据回归预测
前程算法屋
算法神经网络cnnWOA-CNN-BiLSTM
效果一览文章概述WOA-CNN-BiLSTM-Attention鲸鱼算法优化卷积-长短期记忆神经网络结合注意力机制的数据回归预测Matlab语言1.多变量单输出,回归预测。Matlab版本要在2021B以上。优化的参数为:学习率,隐藏层节点数,正则化参数。评价指标包括:R2、MAE和MAPE等,图很多,出图结果如图所示,可完全满足您的需求[cool]2.直接替换Excel数据即可用,适合新手小白[
- 2018-12-16
韩静_340c
中小学心育课程的评价。评价心育课程的实施效果还是评价心育课程的实施过程?人的改变是一个复杂,多因素影响的过程。心意活动课的辅导效果不可能立竿见影,它的效果往往是滞后的。因此我们还是应该把重点放在评价心育活动课的实施过程上。评价是为分高下还是为促改进。学科教学评价指标适用于心育活动课吗?心育活动课的课堂进程是按团体动力的发展规律,再加以组织的。评课不要怕讲真话。讲真话肯定会触动开课教师的灵魂,但无论
- 指标体系构建整理
八克牙
1.定义评价指标体系是指表征评价对象各方面特性及相互联系的多个指标,所构成的具有内在结构的有机整体指标体系:从不同维度梳理业务,把指标有系统地组织起来。简而言之,指标体系=指标+体系,所以一个指标不能叫指标体系,几个毫无关系的指标也不能叫做指标体系指标体系的作用:监控业务情况;拆解指标寻找当前业务问题;评估业务可改进的地方,找出下一步工作的方向2遵循的原则区域性原则:衡量一个研究对象的运行情况,要
- 目标检测任务的调研与概述
Alexa2077
目标检测目标跟踪人工智能
目标检测任务的调研与概述0FQA1目标检测任务基本知识:1.1什么是目标检测?1.2目标检测的损失函数都有那些?1.2.1类别损失:1.2.2位置损失:1.3目标检测的评价指标都有那些?1.4目标检测有那些常见的数据集?2目标检测的进阶知识:2.1经典的backbone:2.2目标检测器-传统的检测方法2.3目标检测器-两阶段的检测方法:2.3.1R-CNN开山之作2.3.2SPP-Net2.3.
- 统计学|Python|主成分分析主成分得分系数计算
lightteng
统计学pythonpython开发语言矩阵数据分析
前言:因为spss不能直接得到主成分得分系数,参考csdn上其他博主写的文章,整理了一下用于计算主成分得分系数的代码主成分分析原理先略,后面再补主成分分析代码需要用到的库及文件读取,以下以读取csv文件为例,pandas还可以读取excel、sav(spss常用的数据集格式)等格式案例数据:全国重点水泥企业某年的经济效益分析,评价指标有:X1为固定资产利税率,X2为资金利税率,X3为销售收入利税率
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理