标量,向量,矩阵和张量的关系

 

在深度学习中,大家肯定都知道这几个词:标量,向量,矩阵,张量。但是要是让我们具体说下他们,可能一下子找不出头绪。下面介绍一下他们之间的关系:

标量(scalar)
​一个标量表示一个单独的数,它不同于线性代数中研究的其他大部分对象(通常是多个数的数组)。我们用斜体表示标量。标量通常被赋予小写的变量名称。

向量(vector)
​一个向量表示一组有序排列的数。通过次序中的索引,我们可以确定每个单独的数。通常我们赋予向量粗体的小写变量名称,比如xx。向量中的元素可以通过带脚标的斜体表示。向量X的第一个元素是X_1,第二个元素是X_2,以此类推。我们也会注明存储在向量中的元素的类型(实数、虚数等)。

矩阵(matrix)
​矩阵是具有相同特征和纬度的对象的集合,表现为一张二维数据表。其意义是一个对象表示为矩阵中的一行,一个特征表示为矩阵中的一列,每个特征都有数值型的取值。通常会赋予矩阵粗体的大写变量名称,比如A。

张量(tensor)
​在某些情况下,我们会讨论坐标超过两维的数组。一般地,一个数组中的元素分布在若干维坐标的规则网格中,我们将其称之为张量。使用 A来表示张量“A”。张量A中坐标为(i,j,k)的元素记作A_{(i,j,k)}。

四者之间关系

标量是0阶张量,向量是一阶张量。举例:
​标量就是知道棍子的长度,但是你不会知道棍子指向哪儿。
​向量就是不但知道棍子的长度,还知道棍子指向前面还是后面。
​张量就是不但知道棍子的长度,也知道棍子指向前面还是后面,还能知道这棍子又向上/下和左/右偏转了多少。

 

再留一下向量和矩阵的范数归纳

向量的1范数:向量中各个元素的绝对值之和;

向量的2范数:向量中各个元素平方后求和,再开方 ;

向量的负无穷范数:向量中所有元素的绝对值中最小的;

向量的正无穷范数:向量中所有元素的绝对值中最大的;

向量的P范数:向量中所有元素绝对值的P次方和开1/p次幂

矩阵范数:

  • 矩阵的1范数(列范数):矩阵的每一列上的元素绝对值先求和,再从中取个最大的,(列和最大);
  • 矩阵的2范数:矩阵A^TA的最大特征值开平方根;
  • 矩阵的无穷范数(行范数):矩阵的每一行上的元素绝对值先求和,再从中取个最大的,(行和最大)
  • 矩阵的核范数:矩阵的奇异值(将矩阵svd分解)之和,这个范数可以用来低秩表示(因为最小化核范数,相当于最小化矩阵的秩——低秩)
  • 矩阵的L0范数:矩阵的非0元素的个数,通常用它来表示稀疏,L0范数越小0元素越多,也就越稀疏
  • 矩阵的L1范数:矩阵中的每个元素绝对值之和,它是L0范数的最优凸近似,因此它也可以表示稀疏
  • 矩阵的F范数:矩阵的各个元素平方之和再开平方根,它通常也叫做矩阵的L2范数,它的有点在它是一个凸函数,可以求导求解,易于计算

你可能感兴趣的:(标量,向量,矩阵和张量的关系)