- “Datawhale AI夏令营”基于带货视频评论的用户洞察挑战赛
fzyz123
DatawhaleAI夏令营人工智能Datawhale大模型技术NLP深度学习AI夏令营
前言:本次是DatawhaleAI夏令营2025年第一期的内容,赛事是:基于带货视频评论的用户洞察挑战赛(科大讯飞AI大赛)一、赛事背景在直播电商爆发式增长浪潮中,短视频平台积累的海量带货视频及用户评论数据蕴含巨大商业价值。这些数据不仅是消费者体验的直接反馈,更是驱动品牌决策的关键资产。用户洞察的核心在于视频内容与评论数据的联合挖掘:通过智能识别推广商品分析评论中的情感表达与观点聚合精准捕捉消费者
- 数字孪生技术为UI前端注入新活力:实现产品设计的沉浸式体验
ui设计前端开发老司机
ui
hello宝子们...我们是艾斯视觉擅长ui设计、前端开发、数字孪生、大数据、三维建模、三维动画10年+经验!希望我的分享能帮助到您!如需帮助可以评论关注私信我们一起探讨!致敬感谢感恩!一、引言:从“平面交互”到“沉浸体验”的UI革命当用户在电商APP中翻看3D家具模型却无法感知其与自家客厅的匹配度,当设计师在2D屏幕上绘制汽车内饰却难以预判实际乘坐体验——传统UI设计的“平面化、静态化、割裂感”
- [特殊字符] 实时数据洪流突围战:Flink+Paimon实现毫秒级分析的架构革命(附压测报告)——日均百亿级数据处理成本降低60%的工业级方案
Lucas55555555
flink大数据
引言:流批一体的时代拐点据阿里云2025白皮书显示,实时数据处理需求年增速达240%,但传统Lambda架构资源消耗占比超运维成本的70%。某电商平台借助Flink+Paimon重构实时数仓后,端到端延迟从分钟级压缩至800ms,计算资源节省5.6万核/月。技术红利窗口期:2025年ApachePaimon1.0正式发布,支持秒级快照与湖仓一体,成为替代Iceberg的新范式一、痛点深挖:实时数仓
- Python 爬虫实战:视频平台播放量实时监控(含反爬对抗与数据趋势预测)
西攻城狮北
python爬虫音视频
一、引言在数字内容蓬勃发展的当下,视频平台的播放量数据已成为内容创作者、营销人员以及行业分析师手中极为关键的情报资源。它不仅能够实时反映内容的受欢迎程度,更能在竞争分析、营销策略制定以及内容优化等方面发挥不可估量的作用。然而,视频平台为了保护自身数据和用户隐私,往往会设置一系列反爬虫机制,对数据爬取行为进行限制。这就向我们发起了挑战:如何巧妙地突破这些限制,同时精准地捕捉并预测播放量的动态变化趋势
- 视频分析:让AI看懂动态画面
随机森林404
计算机视觉音视频人工智能microsoft
引言:动态视觉理解的革命在数字信息爆炸的时代,视频已成为最主要的媒介形式。据统计,每分钟有超过500小时的视频内容被上传到YouTube平台,而全球互联网流量的82%来自视频数据传输。面对如此海量的视频内容,传统的人工处理方式已无法满足需求,这正是人工智能视频分析技术大显身手的舞台。视频分析技术赋予机器"看懂"动态画面的能力,使其能够自动理解、解释甚至预测视频中的内容,这一突破正在彻底改变我们与视
- Android 系统默认代码,如何屏蔽相册分享功能
Android系统默认代码,如何屏蔽相册分享功能开发云-一站式云服务平台diff--gita/packages/apps/Gallery2/src/com/android/gallery3d/app/GalleryActionBar.javab/packages/apps/Gallery2/src/com/android/gallery3d/app/GalleryActionBar.javaind
- 卫星分析系列之 使用卫星图像量化野火烧毁面积 在 Google Colab 中使用 Python 使用 Sentinel-2 图像确定森林火灾烧毁面积
知识大胖
NVIDIAGPU和大语言模型开发教程pythonsentinel开发语言
简介几年前,当大多数气候模型预测如果我们不采取必要措施,洪水、热浪和野火将会发生更多时,我没想到这些不寻常的灾难现象会成为常见事件。其中,野火每年摧毁大量森林面积。如果你搜索不同地方的重大野火表格,你会发现令人震惊的统计数据,显示由于野火,地球上有多少森林面积正在消失。在本教程中,我将结合我已经发表过的关于下载、处理卫星图像和可视化野火的故事,量化加州发生的其中一场重大野火的烧毁面积。与之前的帖子
- 使用NVIDIA NeRF将2D图像转换为逼真的3D模型(Python)
ByteWhiz
3dpython计算机视觉Python
使用NVIDIANeRF将2D图像转换为逼真的3D模型(Python)NeuralRadianceFields(NeRF)是一种强大的方法,可以将2D图像转换为逼真的3D模型。它使用神经网络来建模场景的辐射场,并通过渲染多个视角的图像来重建3D模型。在本文中,我们将使用Python和NVIDIANeRF库来实现这一过程。首先,我们需要安装所需的库。我们可以通过以下命令使用pip安装NVIDIANe
- 搜广推校招面经九十三
Y1nhl
搜广推面经机器学习人工智能python算法推荐算法pytorch搜索算法
字节懂车帝一面一、NDCG(NormalizedDiscountedCumulativeGain)的计算NDCG是信息检索和排序任务中常用的评价指标,用于衡量模型预测的排序质量与真实相关性排序的一致程度。1.1.DCG@k(DiscountedCumulativeGain)DCG@k=∑i=1krelilog2(i+1)\text{DCG@k}=\sum_{i=1}^{k}\frac{rel_i
- 目标检测中的NMS算法详解
好的,我们来详细解释一下目标检测中非极大值抑制(Non-MaximumSuppression,NMS)的相关概念和计算过程。1.为什么需要NMS?问题:目标检测模型(如FasterR-CNN,YOLO,SSD等)在推理时,对于同一个目标物体,通常会预测出多个重叠的、不同置信度(confidencescore)的候选边界框(BoundingBoxes)。直接输出所有这些框会导致:结果冗余:同一个物体
- fps透视基础-d3d绘制-绘制文字-绘制方框-绘制连线
程序员陈子青
逆向工程DirectXfps透视画方框画文字
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓#include#include#pragmacomment(lib,"d3d9.lib")#pragmacomment(lib,"d3dx9.lib")staticLPDIRECT3D9g_pD3D=NULL;staticD3DPRESENT_PARAMETERSg_d3dpp={};staticLPDIRECT3DDEVICE9g_pd3dDevice=NUL
- 任鸟飞FPS类型游戏绘制,骨骼,u3d,UE4和游戏安全,反外挂研究 (三)
任鸟飞逆向~
FPSC语言网络安全3d游戏ue4
书接上文,我们非矩阵的方式绘制是没有那么的精确的在学习矩阵之前,我们先来了解下绘制的几种方法绘制的几种方法和反外挂建议第一种hookd3d/opengl优点:不闪,代码简单缺点:非常容易被检测第二种窗口上自行绘制,但是会闪优缺点适中第三种自建透明窗口,覆盖游戏窗口,透明窗口上绘制优点:稳定确定:代码复杂,会闪反外挂:无非就是针对外挂使用的函数进行检测深入学习矩阵对象的世界坐标列向量xyzw(w为了
- 资源分享-FPS, 矩阵, 骨骼, 绘制, 自瞄, U3D, UE4逆向辅助实战视频教程
小零羊
矩阵3due4
文章底部获取资源教程概述本视频教程专为游戏开发者和安全研究人员设计,涵盖FPS游戏设计、矩阵运算、骨骼绘制、自瞄算法、U3D和UE4逆向辅助等实战内容。通过102节详细视频教程,您将掌握从基础到高级的游戏开发与安全防护技能。教程内容1.FPS类型游戏的设计研究和游戏安全,反外挂研究2.二维向量和平面距离3.atan2和tan4.三维向量和空间距离5.补充向量乘法6.矩阵和矩阵的运算7.矩阵的特性8
- 前端每周清单第 16 期:JavaScript 模块化现状;Node V8 与V6 真实性能对比
前端每周清单第16期:JavaScript模块化现状;NodeV8与V6真实性能对比;Nuxt.jsSSR与权限验证指南为InfoQ中文站特供稿件,首发地址为这里;如需转载,请与InfoQ中文站联系。从属于笔者的Web前端入门与工程实践的前端每周清单系列系列;部分文章需要自备梯子。前端每周清单第16期:JavaScript模块化现状;NodeV8与V6真实性能对比;Nuxt.jsSSR与权限验证指
- 使用tensorflow的线性回归的例子(十二)
lishaoan77
tensorflowtensorflow线性回归人工智能戴明回归
DemingRegression这里展示如何用TensorFlow求解线性戴明回归。=+y=Ax+b我们用iris数据集,特别是:y=SepalLength且x=PetalWidth。戴明回归Demingregression也称为totalleastsquares,其中我们最小化从预测线到实际点(x,y)的最短的距离。最小二乘线性回归最小化与预测线的垂直距离,戴明回归最小化与预测线的总的距离,这种
- 扔物线--Kotlin协程训练营2期-2
笔记仅做自己学习用,方便自己复习知识。若正好可以帮助到Viewer,万分欣喜~若博客侵权,扔物线大大不允许放上面,麻烦告知本文是扔物线Kotlin第二期协程训练营的第二篇文章没看过第一篇文章的可以先看第一篇:https://blog.csdn.net/bluerheaven/article/details/106969835目录一、Retrofit对协程的支持二、Retrofit和RxJava的结
- Python 取证学习指南第二版(一)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/46c71d4b3d6fceaba506eebc55284aa5译者:飞龙协议:CCBY-NC-SA4.0前言在编写《学习Python取证》一书时,我们有一个目标:以一种方式教授Python在取证中的应用,使得没有编程经验的读者可以立即跟随并开发出可以用于案件工作中的实用代码。但这并不意味着本书仅适合Python新手;在整个过程中,我们会逐步让读者
- Python 取证学习指南第二版(三)
原文:annas-archive.org/md5/46c71d4b3d6fceaba506eebc55284aa5译者:飞龙协议:CCBY-NC-SA4.0第七章:模糊哈希哈希是DFIR中最常见的处理过程之一。这个过程允许我们总结文件内容,并分配一个代表文件内容的独特且可重复的签名。我们通常使用MD5、SHA1和SHA256等算法对文件和内容进行哈希。这些哈希算法非常有价值,因为我们可以用它们进行
- shell脚本实现Hive库表迁移
docsz
hiveLinuxshell
1、获取hive所有库的建表语句#获取hive所有库的建表语句#!/bin/bashmkdir-p~/hive/tables/tablesDDL#获取库名hive-e"showdatabases;">~/hive/databases.txtsed-i'1,3d'~/hive/databases.txtsed-i'$d'~/hive/databases.txtcat~/hive/databases.
- 如何使用Python实现交通工具识别
如何使用Python实现交通工具识别文章目录技术架构功能流程识别逻辑用户界面增强特性依赖项主要类别内容展示该系统是一个基于深度学习的交通工具识别工具,具备以下核心功能与特点:技术架构使用预训练的ResNet50卷积神经网络模型(来自ImageNet数据集)集成图像增强预处理技术(随机裁剪、旋转、翻转等)采用多数投票机制提升预测稳定性基于置信度评分的结果筛选策略功能流程用户通过GUI界面选择待识别图
- 【EGSR2025】材质+扩散模型+神经网络相关论文整理随笔(四)
Superstarimage
文献随笔材质神经网络人工智能扩散模型
AnevaluationofSVBRDFPredictionfromGenerativeImageModelsforAppearanceModelingof3DScenes输入3D场景的几何和一张参考图像,通过扩散模型和SVBRDF预测器获取多视角的材质maps,这些maps最终合并成场景的纹理地图集,并支持在任意视角、任意光照条件下进行重新渲染。样例图如下:在当前时代的技术背景下,生成与几何匹配
- 从原理到实战:ISP(图像信号处理器)深度解析与应用指南
从原理到实战:ISP(图像信号处理器)深度解析与应用指南摘要本文系统解析ISP(ImageSignalProcessor,图像信号处理器)的核心功能,详细拆解其工作流程(RAW处理→黑电平校正→AWB→3DNR→Defog→Gamma),深入解读关键参数(吞吐量、WDR类型、低照度性能)的技术意义,并详解寄存器表与在线调试工具的配置方法。通过表格对比、分点解析等方式,从基础原理到工程实践,覆盖IS
- npi阶段是什么意思_企业发展的几个阶段你清楚吗?
企业在开始设立之初,很多的老板知识凭着一腔热血向前发展呢,并没有详细或完整的制定出一套“企业发展规划”,这就导致在后期的发展过程中,会存在或者说遇到很多的麻烦,所以每一个成功的企业,都必须清楚的知道发展的方向是什么,知道企业有多个个发展阶段,在每个发展阶段应该注意什么、提前规划什么?以下就针对这些问题,给大家做一个简单的阐述:大家都知道,一个初创企业的生命期大概只有3年,3年是决定这家企业是否可以
- 医疗金融预测与语音识别中的模型优化及可解释性技术突破
智能计算研究中心
其他
内容概要随着人工智能技术的纵深发展,模型优化与可解释性技术正在重塑医疗诊断、金融预测及语音识别领域的应用范式。在医疗领域,基于自适应学习的动态参数调整机制,结合迁移学习的跨场景知识复用,显著提升了疾病筛查模型的泛化能力;而金融预测场景中,联邦学习框架通过分布式数据协作,在保障隐私安全的前提下,实现了风险预测模型的多维度优化。语音识别领域则依托边缘计算架构,将模型压缩技术与实时推理引擎结合,有效解决
- 第35周—————糖尿病预测模型优化探索
目录目录前言1.检查GPU2.查看数据编辑3.划分数据集4.创建模型与编译训练5.编译及训练模型6.结果可视化7.总结前言本文为365天深度学习训练营中的学习记录博客原作者:K同学啊1.检查GPUimporttorch.nnasnnimporttorch.nn.functionalasFimporttorchvision,torch#设置硬件设备,如果有GPU则使用,没有则使用cpudevice=
- bert中 [CLS] 和 [SEP] 表示什么意思?
[CLS]和[SEP]是BERT中的两个特殊标记符号,在BERT的输入文本中起到特殊的作用。[CLS]是"classification"的缩写,在文本分类任务中,它通常表示句子或文档的开头。在BERT中,[CLS]对应着输入文本中第一个词的词向量,输出层中的第一个神经元通常会被用来预测文本的类别。[SEP]是"separator"的缩写,它通常表示句子或文档的结尾。在BERT中,[SEP]对应着输
- 【Rust日报】使用Rust开发分布式系统的经验教训
Fjall-一个安全Rust的KV存储引擎Fjall是一个可嵌入的基于LSM的forbid-unsafeRust键值存储引擎。它的目标是成为一个可靠且可预测但性能优异的通用KV存储引擎,适用于小型数据集,尤其是大于内存大小的数据集。我刚刚发布了1.0版本,该版本稳定了其数据格式,适用于所有未来的1.x.x版本。它的设计受到了LevelDB/RocksDB架构的重大影响,并且通常具有相似的性能。它具
- 使用python的open3d库读取Bin格式点云并可视化
Python有很多库都可以处理点云,比如Python-PCL、Open3D等等。Python-PCL库已经很久没有维护了,而且安装极其麻烦!Open3D是由intel发布的3D点云可视化库,点云可视化和渲染都很方便,重要的是安装方便!!!1.安装PythonOpen3D环境:Ubuntu16.04pipinstallopen3d==0.9.0.0注意:open3d0.9.0.0只支持python2
- Spring Boot进阶(49):实时通信不再是梦想,SpringBoot+WebSocket助你轻松实现前后端即时通讯!
bug菌¹
滚雪球学SpringBoot#SpringBoot零基础入门springbootWebSocket前后端通信
1.前言在上一期,我对WebSocket进行了基础及理论知识普及学习,WebSocket是一种基于TCP协议实现的全双工通信协议,使用它可以实现实时通信,不必担心HTTP协议的短连接问题。SpringBoot作为一款微服务框架,也提供了轻量级的WebSocket集成支持,本文将介绍如何在SpringBoot项目中集成WebSocket,实现前后端通信。这将又会是干货满满的一期,全程无尿点不废话只抓
- YOLOv8 环境监测五大场景 —— 二、 森林火灾早期预警 之无人机巡逻监测 详细解释及代码完整示例
路飞VS草帽
YOLOv8原理与源代码讲解---六大章YOLOv各版本的应用详细说明及代码示例环境监测五大场景YOLO无人机环境监测森林火灾早期预警无人机巡逻监测YOLOv8
YOLOv8无人机森林火灾巡逻监测系统系统架构设计无人机火灾监测系统组成:1.飞行平台-多旋翼无人机(续航≥60分钟)-双光吊舱(可见光+红外)-RTK高精度定位-4G/5G数据链2.机载计算单元-JetsonOrinNX(AI加速)-轻量化YOLOv8模型-实时火情分析3.地面控制站-飞行路径规划-实时视频监控-火情预警系统4.云端协同-多机任务分配-火势扩散预测-应急资源调度完整代码实现1.无
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息