- 基于R语言的现代贝叶斯统计学方法(贝叶斯参数估计、贝叶斯回归、贝叶斯计算实践过程
xiao5kou4chang6kai4
统计生态农业r语言回归贝叶斯统计学线性回归
专题一贝叶斯统计学的思想与概念1.1信念函数与概率1.2事件划分与贝叶斯法则1.3稀少事件的概率估计1.4可交换性1.5预测模型的构建专题二单参数模型2.1二项式模型与置信域2.2泊松模型与后验分布2.3指数族模型与共轭先验专题三蒙特卡罗逼近3.1蒙特卡罗方法3.2任意函数的后验推断3.3预测分布采样3.4后验模型检验专题四正态模型4.1均值与条件方差的推断4.2基于数学期望的先验4.3非正态分布
- 【大模型】从零样本到少样本学习:一文读懂 Zero-shot、One-shot 和 Few-shot 的核心原理与应用!
橙子小哥的代码世界
NLP自然语言理解大模型自然语言处理sklearn深度学习神经网络tensorflow
《从零样本到少样本学习:一文读懂Zero-shot、One-shot和Few-shot的核心原理与应用!》正文:在自然语言处理(NLP)领域,Zero-shot、One-shot和Few-shot学习已经成为衡量大语言模型泛化能力的重要指标。尤其是在大规模预训练模型(如GPT系列)的推动下,这些技术得到了广泛应用和关注。本篇文章将带你全面了解这三种学习方法的核心概念、原理和实际应用场景。1.什么是
- 人工智能:人形机器人的开发需要哪些技能?
InnoLink_1024
机器学习AGI人工智能人工智能机器人ai
人形机器人的开发需要多学科、多领域的专业技能,具体如下:机械工程技能机械设计与建模:熟练掌握计算机辅助设计(CAD)软件,如SolidWorks、AutoCAD等,能够创建精确的3D模型,进行结构分析,并为制造准备详细的图纸。材料与制造工艺:了解各种材料的性质、接合技术以及制造工艺,如铣削、车削、3D打印等,根据机器人的应用场景和性能要求,选择合适的材料和制造工艺。运动学与动力学分析:深入理解运动
- 通俗易懂之样条函数的原理、计算、案例、python实现
智识小站
可解释机器学习python算法
理解样条函数(SplineFunctions)是掌握广义加性模型(GAMs)及其他非线性回归技术的关键。样条函数通过分段多项式的形式,在不同区间内灵活地拟合数据,从而捕捉复杂的非线性关系。本文将更为详细地讲解样条函数的原理、具体示例以及在Python中的实现方法。如果这篇文章对你有一点点的帮助,欢迎点赞、关注、收藏、转发、评论哦!我也会在微信公众号“智识小站”坚持分享更多内容,以期记录成长、普及技
- 广义加性模型的参数、半参数、非参数形式
智识小站
可解释机器学习算法
简要介绍在统计学中,广义加性模型(GAM)是一种广义线性模型,其中线性响应变量线性地依赖于一些预测变量的未知光滑函数,并且人们对这些光滑函数的推理很感兴趣。GAM最初由TrevorHastie和RobertTibshirani[1]开发,用于将广义线性模型的性质与加性模型相结合。它们可以被解释为朴素贝叶斯生成模型的判别推广。该模型将一个单变量响应变量Y和一些预测变量联系起来。为Y指定指数族分布,例
- 软素质和专业能力要怎么考察?
喵呜刷题
面试面试
1.Ability软素质(特别是自驱力)怎么考察?①自驱力克服过最大的挑战/困难/苦是什么?最近几年的目标是什么?有为这个目标付出过什么?有大概路径吗?-有目标但行动很差的=光说不练=减分-一般几点到公司几点走?-我很少见到不勤奋能做好工作的,但这不是deal-breaker;加班多≠自驱力强,也有加班多但产出很差的,只是自驱的人从概率看通常工作时间比较长有什么主动改进工作/改变公司,并有一定结果
- Compose Multiplatform+kotlin Multiplatfrom
宝杰X7
androidandroidjetpackkotlinioswebappswift
ComposeMultiplatform+kotlinMultiplatfrom前言功能需求分析好用的库依赖如下shared的build.gradle下面是/gradle/libs.versions.toml下面是androidApp下的build.gradle结尾前言现在Android原生需求日渐减少,多平台或车载,端侧大模型等我看是未来的主流,上一年做了新能源DBC协议的数据可视化显示,将数据
- Cognitive Architectures for Language Agents
UnknownBody
LLMAgent语言模型AI代理
本文是LLM系列文章,针对《CognitiveArchitecturesforLanguageAgents》的翻译。语言代理的认知架构摘要1引言2背景:从字符串到符号AGI3语言模型与生产系统之间的链接4语言代理的认知架构(CoALA):一个概念框架5用例6可操作的见解7讨论8结论摘要最近的努力已经将大型语言模型(LLM)与外部资源(例如,互联网)或内部控制流(例如,提示链接)结合起来,用于需要基
- 【Compose multiplatform教程23】在通用代码中使用视图模型(ViewModel)
小林爱
Composeandroid多平台kotlin前端框架
使用Compose多平台(ComposeMultiplatform)可以在通用代码中实现安卓(Android)中那种通过视图模型(ViewModelhttps://developer.android.com/topic/libraries/architecture/viewmodel)构建用户界面(UI)的方法。在Compose多平台环境中,对通用视图模型(ViewModel)的支持仍处于实验阶段
- 嵌入式驱动开发详解视频教程
acp小鸡炖蘑菇
嵌入式linux驱动开发嵌入式视频
第一章+Linux设备驱动模型第二章Linux内核模块第三章Linux内核编程API第四章Linux字符设备驱动第五章Linux块设备驱动第六章Linuxplatform驱动第七章Linux触摸屏设备驱动第八章LinuxLCD设备驱动第九章LinuxALSA设备驱动第十章LinuxI2C和SPI设备驱动第十一章Linux网络设备驱动第十二章Linux内核调试第十三章ARM开发板LinuxBSP构建
- 编程之路:蓝桥杯备赛指南
酷酷的崽798
机器学习蓝桥杯职场和发展
文章目录一、蓝桥杯的起源与发展二、比赛的目的与意义三、比赛内容与形式四、比赛前的准备五、获奖与激励六、蓝桥杯的影响力七、蓝桥杯比赛注意事项详解使用Dev-C++的注意事项一、蓝桥杯的起源与发展蓝桥杯全国软件和信息技术专业人才大赛,简称蓝桥杯,自2009年创办以来,已成为中国最具影响力的计算机类赛事之一。该比赛旨在促进高校学生的编程能力与创新思维,提高他们的实际动手能力。二、比赛的目的与意义提高专业
- 什么是AI显卡,英伟达与AMD显卡的全面对比
wit_@
人工智能python算法deeplearning大数据网络
什么是AI显卡?AI显卡是专门为人工智能计算任务设计和优化的图形处理器(GPU)。相比传统显卡,AI显卡具备更强的计算能力、更高的并行处理效率以及针对深度学习、数据科学等领域的特殊硬件支持。在人工智能领域,尤其是深度学习中,训练和推理任务需要处理大量的矩阵运算,这正是GPU擅长的领域。AI显卡通过高度并行的架构,可以显著提升训练速度和模型性能,同时降低功耗和延迟。常见的AI显卡用途包括:深度学习模
- 详解AI大模型的主要指标与国内常见大模型对比分析
wit_@
人工智能AIGC语言模型ai大数据服务器
AI大模型的主要指标与国内常见大模型对比分析随着人工智能技术的快速发展,大模型(LargeAIModels)在自然语言处理、计算机视觉和多模态任务中取得了突破性进展。对于选择和评价AI大模型,不仅需要关注其功能,还要理解其关键指标和性能表现。本文将详细分析AI大模型的主要评价指标,并对国内常见大模型进行具体对比,提供实际数值和深度解析。一、AI大模型的主要指标AI大模型的性能和实用性通常通过以下指
- 计算机技术:冯·诺伊曼架构
InnoLink_1024
嵌入式操作系统架构
冯·诺伊曼架构(VonNeumannArchitecture)是由著名数学家和计算机科学家约翰·冯·诺伊曼(JohnvonNeumann)在20世纪40年代提出的一种计算机设计模型。它奠定了现代通用计算机设计的基础。1.核心思想冯诺伊曼架构的核心思想是存储程序的概念,即将指令和数据存储在同一个内存中,由中央处理器(CPU)依次读取和执行。具体来说,它包含以下关键特性:存储单元使用一个统一的存储设备
- 深入了解卷积神经网络(CNN):图像处理与深度学习的革命性技术
wit_@
cnnpython机器学习深度学习scikit-learn
深入了解卷积神经网络(CNN):图像处理与深度学习的革命性技术导语卷积神经网络(CNN)是现代深度学习领域中最重要的模型之一,特别在计算机视觉(CV)领域具有革命性的影响。无论是图像分类、目标检测,还是人脸识别、语音处理,CNN都发挥了举足轻重的作用。随着技术的不断发展,CNN已经成为了解决众多实际问题的核心工具。但对于许多人来说,CNN仍然是一个相对复杂的概念,尤其是初学者可能会被其背后的数学原
- python 特征选择方法_【来点干货】机器学习中常用的特征选择方法及非常详细的Python实例...
Blair Long
python特征选择方法
花费了很长时间整理编辑,转载请联系作者授权,违者必究。特征选择(Featureselection)是在构建预测模型的过程中减少输入变量的一个过程。它是机器学习中非常重要的一步并在很大程度上可以提高模型预测精度。这里我总结了一些机器学习中常见的比较有用的特征选择方法并附上相关python实现code。希望可以给大家一些启发。首先,我们为什么要进行特征选择呢?它有以下几个优点:减少过拟合:冗余数据常常
- 7-2 Merging Linked Lists
J_北冥有鱼
原来L1和L2不一定是L1》#include#include#includeusingnamespacestd;intconstmaxn=100010;structnode{intfirst,data,next;}Node[maxn];intmain(){inth1,h2,n,num,a,d,b;vectorv1,v2
- python 单因子方差分析_假设检验之F检验-方差分析
雏Carnation
python单因子方差分析
这一次我们来了解一下假设检验中另一个重要检验-F检验什么是F检验?F检验(F-test),最常用的别名叫做联合假设检验(英语:jointhypothesestest),此外也称方差比率检验、方差齐性检验,方差分析,它是一种在(H0)之下,统计值服从的检验。其通常是用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计总体F检验对于数据的正态性非常敏感,因此在检验方差齐
- 一文读懂数据仓库构建流程(超详细)
嗨皮一会吧
数仓构建数据仓库
相信大家都知道数仓分层架构(ods、dwd、dim、dws等)。但是面对一个从0开始的数仓,我们难免会有一个疑问,应该如何去构建各层,以及数仓规划中要有哪些事实表和维度表,这个理论依据从何而来呢,相信大家看完本篇文章,可以在搭建数仓的时候有一个理论依据。1、数仓构建整体流程数仓构建核心图:我们可以发现其实数据开发占比整个数仓构建流程只是很小的部分,只要我们将前期的数据调研,各种数仓模型设计好,剩下
- 【YOLOV8】YOLOV8模型训练train及参数详解
小小小小祥
YOLO
介绍训练深度学习模型涉及为其提供数据并调整其参数,以便它能够做出准确的预测。UltralyticsYOLOv8的训练模式专为有效、高效地训练目标检测模型而设计,充分利用现代硬件的能力。本指南旨在涵盖使用YOLOv8强大功能集训练自定义模型所需的所有细节,帮助你快速入门。为什么选择UltralyticsYOLO进行训练?高效性:无论是单GPU设置还是跨多个GPU扩展,都能充分利用你的硬件。多功能性:
- 【YOLOV8】目标检测任务中应该如何选择YOLOV8n/s/m/l/x模型及输入尺寸大小
小小小小祥
YOLO目标检测人工智能
问题描述:YOLOV8作为目前主流的深度学习网络,支持图像分类、目标检测、实例分割、姿态检测、旋转目标检测等功能。对于目标检测任务官方提供了n/s/m/l/x五个模型,我们在使用YOLOV8模型进行自己任务训练时,应该如何选择YOLOV8的模型以及输入尺寸大小呢?YOLOV8官网:https://github.com/ultralytics/ultralyticsYOLOV8n/s/m/l/x信息
- openai的代理框架中国版swarmforchinese,又简单又实用而且是趋势
Ai君臣
智能代理agentswarm
一、背景智能代理,就是可以给你去完成任务的智能体,最核心的是LLMS的智能性现在市面上个各种复杂的框架,1、无代码可以搭建,非常复杂,造成难度高而且容易出错,像字节,百度都有2、纯代码的也很多。各种概念,概念生涩难懂,与大模型用自然对话非常简洁相反而驰有没有一种非常简单又实用的框架有openAI开源的swarm但是默认用的openai的接口。国内是用不了的,那么swarmforchinese这个仓
- 探索LLMonitor:全面提升AI应用可观测性的开源平台
afTFODguAKBF
人工智能python
引言在构建和部署大型语言模型(LLM)和聊天模型时,开发者通常面临数据追踪、使用情况分析、成本控制等各种挑战。LLMonitor是一个开源的可观测性平台,专注于解决这些挑战。它提供了成本和使用分析、用户跟踪、追踪和评估工具。本文将详细探讨如何设置和使用LLMonitor,以提高AI应用的透明度和效率。主要内容设置LLMonitor要开始使用LLMonitor,首先需要在llmonitor.com上
- 利用Langchain与Minimax进行自然语言处理的精彩指南
afTFODguAKBF
langchain自然语言处理easyuipython
#引言在人工智能的浪潮中,自然语言处理(NLP)成为了企业和个人用户的重要工具。Minimax作为一家中国初创企业,专注于提供优秀的语言模型服务。本篇文章将介绍如何使用Langchain库与Minimax进行交互,帮助开发者充分利用这一强大的AI工具。#主要内容##1.Minimax简介Minimax专注于自然语言处理,为企业和个人用户提供高效的语言模型服务。其API能处理多种自然语言任务,例如文
- ChatGPT4.0最新功能和使用技巧,助力日常生活、学习与工作!
WangYan2022
教程人工智能chatgpt数据分析ai绘画AI写作
熟练掌握ChatGPT4.0在数据分析、自动生成代码等方面的强大功能,系统学习人工智能(包括传统机器学习、深度学习等)的基础理论知识,以及具体的代码实现方法,同时掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、RNN与LSTM神经网络
- C++ initializer_list 列表初始化(八股总结)
fadtes
C++八股c++游戏
定义std::initializer_list是C++11引入的一个类模板,用于支持列表初始化。它允许开发者使用花括号{}提供一组值直接初始化容器或自定义类型。std::initializer_list提供了一种简洁优雅的语法来传递多个值。主要用途初始化容器使用列表初始化方式为容器赋值。#include#includeintmain(){std::vectorvec={1,2,3,4,5};for
- 加速AI模型部署:深入探索Banana的无服务架构
afTFODguAKBF
人工智能架构python
加速AI模型部署:深入探索Banana的无服务架构引言在AI模型的构建与部署中,无服务架构(ServerlessArchitecture)正逐渐成为开发者的首选方案。这种架构可以简化部署流程,提高扩展性,并降低成本。在本文中,我们将探讨如何利用Banana提供的无服务GPU推理来部署AI模型,并结合LangChain实现高效的模型推理。主要内容1.Banana生态系统的优势Banana提供了一套完
- ASPICE 4.0引领自动驾驶未来:机器学习模型的特点与实践
亚远景aspice
机器学习自动驾驶人工智能
ASPICE4.0-ML机器学习模型是针对汽车行业,特别是在汽车软件开发中,针对机器学习(MachineLearning,ML)应用的特定标准和过程。ASPICE(AutomotiveSPICE)是一种基于软件控制的系统开发过程的国际标准,旨在提升软件开发过程的质量、效率和可靠性。ASPICE4.0中的ML模型部分则进一步细化了机器学习在汽车软件开发中的具体要求和流程。以下是对ASPICE4.0-
- 深入解读ChatGPT的工作原理及底层逻辑
NAR_鱼丸
ChatGPT程序人生
ChatGPT的工作原理和底层逻辑可以从多个方面进行解读,主要包括其基本原理、核心技术、训练过程以及应用能力。工作原理涉及了深度学习模型、自然语言处理技术和文本生成算法等多个方面。通过预训练和微调,模型能够理解语言的语法和语义,并能够根据上下文生成符合语境的文本回复。基本原理ChatGPT是一种基于自然语言处理(NLP)和深度学习技术的聊天机器人。其基本原理是使用大量文本数据来训练深度神经网络模型
- 有关 TWRP—Magisk—LSPosed—Plugins(TMLP)的过检
星夜钢琴手
TWRPMagiskLSPosed模块插件
本人对检测和过检的态度是:开源社区应当确保非目标应用的环境完全不被修改,非目标应用在自身环境正常时也不应该过度地干预社区的发展和用户的环境。由于项目一直在更新,笔者比较懒于在Github和CSDN两头同步,所以直接摆下链接:https://github.com/TMLP-Team/TMLP-Detectors-and-Bypassers/blob/main/README.md,参考自https:/
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite