- 2024年Python最全用Python制作一个自动抢票脚本_python抢票脚本,Python面试项目全代码
Android失眠夜
程序员python学习面试
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。需要这份系统化学习资料的朋友,可以戳这里获取一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!classConcert:def__init__(
- NASA锂电池容量增量数据处理
Art1st `Sakura
matlab
Matlab电池充放电画图nasaB005即5号电池在1.5A的恒流(CC)模式下充电,直到电池电压达到4.2V,然后继续以恒压(CV)模式充电,直到充电电流下降到20mA。在恒流(CC)2A水平下放电,直到电池电压分别降至2.7V、2.5V、2.2V和2.5V(电池5、6、7和18)。阻抗测量通过电化学阻抗谱(EIS)频率扫描进行,范围从0.1Hz到5kHz。当电池达到寿命结束(EOL)标准时,
- 人工智能学习框架:深入解析与实战指南
一ge科研小菜鸡
人工智能人工智能
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注引言随着人工智能(AI)技术的飞速发展,深度学习、强化学习和自然语言处理等领域的应用愈加广泛。掌握人工智能学习框架(如TensorFlow、PyTorch、Keras等)已成为开发智能系统、研究前沿技术的必备技能。本指南将全面介绍人工智能主流学习框架的特点、安装方法、核心功能,以及通过实践案例展示如何使用这些框架进行AI模型开发、训练与优化。1.
- IsaacLab从入门到精通(六)真机部署与Sim2real
NathanWu7
IsaacLab人工智能机器人深度学习机器学习
在之前的教程中,我们已经完成了整个强化学习任务流程,现在我们需要将自己训练的策略迁移到真机上1.1Sim2real简要方法论强化学习的Sim2real问题一直以来是非常难解决的问题,在仿真环境中训练的policy往往很难迁移到实际的机器人系统上,因此我们需要用一些特殊的方法协助来实现这个过程。1.1.1建立数字孪生(Digitaltwin)在仿真环境中,我们建立的环境需要尽可能与真实世界对齐,因此
- 【llm对话系统】RL强化学习的技术演进与RLHF
kakaZhui
人工智能chatgptllama
一、强化学习基础知识强化学习(ReinforcementLearning,RL)是一种机器学习方法,它通过智能体(Agent)与环境(Environment)的交互来学习如何行动以最大化累积奖励(Reward)。1.核心概念:智能体(Agent):做出决策并采取行动的学习者。环境(Environment):智能体所处的外部世界,对智能体的行动做出反应。状态(State,S):对环境当前情况的描述。
- The Simulation技术浅析(二):模型技术
爱研究的小牛
AIGC—虚拟现实算法人工智能AIGC机器学习深度学习
一、物理模型(PhysicalModels)1.概述物理模型基于物理定律和原理,通过模拟现实世界中物理系统的行为和相互作用来构建模型。物理模型通常用于工程、物理和化学等领域,用于预测系统在不同条件下的表现。2.关键技术力学定律:例如牛顿运动定律,用于模拟物体的运动和受力情况。流体力学:例如纳维-斯托克斯方程,用于模拟流体流动。热力学定律:例如热传导方程,用于模拟热量传递。3.过程模型公式及案例详解
- 2025年美赛数学建模F题 为农业再培养腾出空间
小驴数模
数学建模美赛2025年美赛
b站小驴数模第一时间观看各个题目解析情况:一片充满高耸的树木和各种野生动物的森林被循环为农业让路。曾经繁荣的生态系统,鸟类、昆虫和动物的家园,消失,取而代之的是种植了一排排的作物。土地开始改变——曾经拥有丰富的自然资源的土壤土壤逐渐枯竭,害虫开始入侵庄稼。为了对抗这种情况,农民们转向了化学品,但土地的平衡被破坏了。随着这种转变,在森林里繁荣起来的错综复杂的生命之网被打破了,一种新的、由人类驱动的农
- 更安全、更丰富 、更兼容 Anolis OS 23.2 版本重磅上线
操作系统开源
经过数月的精心开发与严格的测试流程,龙蜥社区AnolisOS23.2GA版本于2025年伊始首次向广大社区用户发布。该版本是一款基于开源生态发展合作倡议,面向上游原生社区独立选型,持续演进并保障兼容性和稳定性的Linux发行版。本次发布延续了龙蜥社区一贯坚持的高质量、高稳定性的软件包选型原则,在工具链生态、平台支持和安全特性层面有了更多的扩展。该版本将给对安全层面有更多需求的海光和龙芯平台用户提供
- 人工智能技术的应用前景及未来发展
键盘上的蚂蚁-
人工智能生活
引言人工智能(AI)作为21世纪最具创新性和革命性的技术之一,正在全球范围内深刻地改变着我们的生产、工作和生活方式。随着深度学习、强化学习、自然语言处理(NLP)、计算机视觉(CV)等技术的飞速进展,AI不再仅仅是学术研究中的一个热点,而是渗透到各个行业,成为推动创新、优化生产和提升效率的核心力量。对于开发者来说,理解和掌握AI技术不仅是提升个人技能的途径,更是应对未来技术变革、抓住职业机遇的关键
- 海浪波高预测(背景调研)
傅科摆 _ py
文章解读python机器学习人工智能
#新星杯·14天创作挑战营·第7期#ps:图片由通义千问生成历史工作:针对更高细粒度、更高精度的波浪高度预测任务:MumtazAli等人提出了一种多元线性回归模型(MLR-CWLS),该模型利用协方差加权最小二乘法(CWLS)优化算法,借助历史波高、波周期、波向、海表面温度等多变量参数,实现对显著波高的准确预测;ShuntaoFan等人提出了一种基于长短期记忆网络(LSTM)的波高预测模型,用于快
- 【信创主板】中国芯:搭载海光3350系列ATX结构的信创主板
国产化嵌入式平台解决方案
网络嵌入式硬件电脑
搭载海光3350处理器的ATX国产信创电脑主板,是为满足一般桌面应用和轻度工作负载而设计的经济实惠选择,具备良好的性能、稳定性和扩展性,适合大多数家庭和办公环境使用。搭载海光3350处理器的ATX型国产信创电脑主板,通常具有以下特点和优势:1.处理器支持:该主板专为搭载海光3350处理器而设计,确保兼容性和性能优化。2.规格:采用ATX标准,适合于大多数标准桌面电脑机箱,提供良好的扩展性和散热能力
- 基于CNN+Transformer混合模型实现交通流量时序预测(PyTorch版)
矩阵猫咪
cnntransformerpytorch卷积神经网络深度学习
前言系列专栏:【深度学习:算法项目实战】✨︎涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。随着城市化进程的加速,交通流量预测成为城市交通管理与规划中的关键任务。准确的交通流量预测
- 现代卓越认证指南:PMP项目管理专业学习秘籍
大苏牙
本文还有配套的精品资源,点击获取简介:PMP认证作为项目管理领域的全球认可资质,对专业人士的职场竞争力有显著提升作用。文章介绍了南京卓尔越提供的PMP学习策略和资源,强调了PMP框架理解、敏捷方法、风险管理、沟通技巧等关键知识领域的重要性。南京卓尔越的微信图片等资源可帮助考生高效复习和练习,通过定制化学习支持和模拟考试来提高备考效率。1.PMP认证的重要性1.1PMP认证的行业认可度项目管理专业认
- Direct Preference Optimization (DPO): 一种无需强化学习的语言模型偏好优化方法
Yuleave
论文学习语言模型人工智能自然语言处理
论文地址:https://arxiv.org/pdf/2305.182901.背景与挑战近年来,大规模无监督语言模型(LM)在知识获取和推理能力方面取得了显著进展,但如何精确控制其行为仍是一个难题。现有的方法通常通过**强化学习从人类反馈(RLHF)**来引导模型行为,但RLHF存在以下问题:复杂性高:RLHF需要先训练一个奖励模型来反映人类偏好,然后使用强化学习来微调语言模型,使其在最大化奖励的
- 深度强化学习在高频交易中的动态策略优化与收益提升
二进制独立开发
非纯粹GenAIGenAI与Pythonpython人工智能神经网络自然语言处理生成对抗网络金融数据挖掘
文章目录1.高频交易的核心挑战与强化学习的适应性1.1高频交易中的核心问题1.2强化学习的适配性分析2.基于深度Q网络(DQN)的高频交易策略设计2.1状态空间构建:从LOB到特征工程2.2动作空间与奖励函数设计2.3DQN模型架构与训练优化3.业务视角下的策略优化与风险管理3.1策略有效性验证3.2实时部署与延迟优化3.3合规与伦理考量4.实验:基于NASDAQLOB数据的策略对比4.1数据集与
- 智能推理的革命:DeepSeek-R1 深度解析其算法与实现
步子哥
算法人工智能
在人工智能(AI)领域,语言模型(LargeLanguageModels,LLMs)正以惊人的速度发展,变得越来越智能,能够理解和生成复杂的语言内容。然而,尽管现有的模型在许多任务上表现出色,它们在深度推理和逻辑思维方面仍有显著的提升空间。DeepSeek-R1的出现,正是为了解决这一问题,通过强化学习(ReinforcementLearning,RL)赋予语言模型更强大的推理能力,开创了LLMs
- 【浮点数】在内存中如何存储???简单理解
仟濹
C语言学习笔记算法c语言数据结构笔记学习javapython
2024-07-20笔记-32024-09-24修改作者(Author):郑龙浩/仟濹(网名)目录浮点型在内存中的存储①【整型】的存储和获取的方式与【浮点型】的存储和获取的方式是“不一样”的下面举例:浮点存储氛围三部分②浮点数的存储规则要先了解国际标准IEEE(电气和电子工程协会)754,浮点数用V来表示的。如何更好的理解呢???③IEEE754的针对于“有效数字M”和“指数E”④为什么浮点数总是
- 【贪心算法】洛谷P1106 - 删数问题
仟濹
算法学习笔记贪心算法算法c语言c++
2025-01-22-第46篇【洛谷】贪心算法题单-【贪心算法】-【学习笔记】作者(Author):郑龙浩/仟濹(CSND账号名)目录文章目录目录P1106删数问题题目描述输入格式输出格式样例#1样例输入#1样例输出#1提示思路代码P1106删数问题题目描述键盘输入一个高精度的正整数nnn(不超过250250250位),去掉其中任意kkk个数字后剩下的数字按原左右次序将组成一个新的非负整数。编程对
- Python设计模式 - 抽象工厂模式
mofei12138
设计模式pythonpython设计模式抽象工厂模式
定义抽象工厂模式是一种创建型设计模式,它提供了一种创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。产品等级结构与产品族为了更好地理解抽象工厂模式,先引入两个概念:产品等级结构:就是产品的继承结构。例如电视机抽象类有A品牌电视机子类和B品牌电视机子类,那么抽象电视机和具体品牌的电视机就构成了一个产品等级结构。产品族:同一个工厂生产的,位于不同产品等级结构中的一组产品。例如海尔工厂生产的海
- 游戏AI 技术方案部分解析 |用 AI 技术,练就 FPS 游戏中的刚枪王!
游戏智眼
游戏AI人工智能
一、整体方案详情FPS作为重度竞技游戏品类,存在显著的新手留存问题及高端匹配困难问题,通过引入AI陪玩智能体来针对性解决FPS品类通用痛点。在这个过程中,我们用到了强化学习,让AI通过自我在游戏中学习探索,最终成为超越或比肩人类顶尖玩家水平的强大AI。1.针对新手留存问题通过引入不同水平的陪玩智能体+智能投放来为新手玩家设计好前20局甚至前50局的对战,为玩家制造一个平滑的新手过渡期,帮手玩家更顺
- 大模型GUI系列论文阅读 DAY4:《PREDICT: Multi-Agent-based Debate Simulation for Generalized Hate Speech Detecti》
feifeikon
论文阅读
摘要虽然已经提出了一些公共基准用于训练仇恨言论检测模型,但这些基准之间的标注标准差异为模型的泛化学习带来了挑战,限制了其适用性。先前的研究提出了通过数据整合或扩充来泛化模型的方法,但在克服数据集之间的标注标准差异方面仍然存在局限性。为了解决这些挑战,我们提出了PREDICT,一种基于多代理(multi-agent)概念的仇恨言论检测新框架。PREDICT包括两个阶段:(1)PRE(基于视角的推理)
- [E题成品文章发布]2025美赛数学建模E题35页成品论文+每小问配套py+matlab代码+完整数据集+高清可视化结果图
2025数学建模资料汇总
2025美赛数学建模E题数学建模matlab开发语言
基于生态模型的有机农业管理策略研究:除草剂移除与物种引入的生态影响分析摘要随着全球农业可持续性需求的增加,减少化学品使用并提高农业生态系统的稳定性成为关键目标。本研究基于农业生态系统中的物种互动模型,探讨了不同农业管理方式对生态系统稳定性、害虫控制和成本效益的影响。完整版获取如下地址:点击加入【2025美国大学生数学建模竞赛】:http://qm.qq.com/cgi-bin/qm/qr?_wv=
- 文本嵌入技术Text Embedding模型详解:text2vec、OpenAI ada-002到M3E及BGE-M3的演变
汀、人工智能
embeddingRAG文本嵌入词嵌入模型m3ebge
TextEmbedding模型:从text2vec、openai-textembedding到m3e、BGE1.TextEmbedding榜单:MTEB、C-MTEB1.1《MTEB:MassiveTextEmbeddingBenchmark(海量文本嵌入基准)》判断哪些文本嵌入模型效果较好,通常需要一个评估指标来进行比较,《MTEB:MassiveTextEmbeddingBenchmark(海
- 【VScode】如何使用详细步骤【笔记】、配置 C / C ++【笔记】
仟濹
编程工具的使用方法合集C语言学习笔记vscode笔记c语言c++c#开发语言经验分享
2024-10-10-笔记-24作者(Author):郑龙浩(仟濹)该笔记写于2024-07-02摘抄到博客上的时间是2024-10-10VScode配置C/C++笔记我是看了下方链接的视频后为了方便后期复习做的笔记:B站某UP主的视频如下:VScode配置C/C++开发环境,安装/环境配置/编译/调试/汉化/编码问题_哔哩哔哩_bilibili[VScode配置C/C++开发环境,安装/环境配置
- 自定义类型 - 联合
仟濹
C语言学习笔记算法笔记c语言c++c#
2024-10-13-笔记-29作者(Author):郑龙浩/仟濹(CSDN账号名)联合(共用体)①联合的概念在C语言中,联合(Union)是一种自定义类型,这种(联合)类型定义的变量包含一系列的成员,其显著特征是这些成员共享(或公用)同一块内存空间,这意味着在同一时间点上,这块内存空间只能存储联合中某个成员的数据(因此联合也被称为共用体)。联合需要注意的问题:联合类型的成员共享同一个内存空间,因
- 第十五届蓝桥杯软件赛C/C++大学A组个人省赛题解
2301_78234743
java
题解|#压缩字符串(一)#/***代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可***@4月末字节offer,51可以放松一下了从三月初开始零碎的投递,到三月底开始海投,三月的时候面试的机会其实很少,到4月初面试机会才逐渐多了起题解|#四则运算#importjava.util.*;//注意类名必须为Main,不要有任何package众远智慧离谱电话面2月底投的写完了笔试,
- 想转行到人工智能领域,我该学什么,怎么学?
张登杰踩
人工智能python
转行到人工智能(AI)领域需要系统的学习和实践,以下是详细的路径建议,涵盖基础知识、技能学习、项目实践和求职准备:一、明确目标和领域方向人工智能领域广泛,建议先了解细分方向(如机器学习、深度学习、计算机视觉、自然语言处理、强化学习等),结合兴趣和职业规划选择切入点。二、构建基础知识1.数学基础线性代数:矩阵运算、特征值、向量空间。微积分:导数、梯度、优化理论。概率与统计:贝叶斯定理、分布、假设检验
- 【算法笔记】洛谷 - 贪心算法 - P1208 [USACO1.3] 混合牛奶 Mixing Milk
仟濹
算法学习笔记算法笔记贪心算法c++c语言
2024-12-26-第43篇洛谷贪心算法题单-贪心算法-学习笔记作者(Author):郑龙浩/仟濹(CSND账号名)洛谷P1208[USACO1.3]混合牛奶MixingMilk文章目录洛谷P1208[USACO1.3]混合牛奶MixingMilk题目描述输入格式输出格式样例#1样例输入#1样例输出#1提示:思路:代码:题目描述由于乳制品产业利润很低,所以降低原材料(牛奶)价格就变得十分重要。帮
- 自动驾驶中的虚实迁移学习:降低对真实世界数据的依赖
AI架构设计之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
自动驾驶,迁移学习,虚实环境,数据效率,深度学习,强化学习1.背景介绍自动驾驶技术作为人工智能领域的重要应用之一,其发展离不开海量真实世界驾驶数据。然而,收集和标注真实世界驾驶数据成本高昂,且存在安全隐患。因此,如何降低对真实世界数据的依赖,提高自动驾驶系统的训练效率和安全性,成为一个亟待解决的关键问题。虚实迁移学习(Virtual-to-RealTransferLearning)作为一种新兴的机
- 大模型GUI系列论文阅读 DAY2续2:《使用指令微调基础模型的多模态网页导航》
feifeikon
论文阅读
摘要自主网页导航的进展一直受到以下因素的阻碍:依赖于数十亿次的探索性交互(通常采用在线强化学习),依赖于特定领域的模型设计,难以利用丰富的跨领域数据进行泛化。在本研究中,我们探讨了基于视觉-语言基础模型的数据驱动离线训练方法,以改进网页代理的性能。我们提出了一种名为WebGUM的指令跟随多模态代理,该代理能够同时观察网页截图和HTML页面,并输出网页导航操作,例如点击和输入文本等。WebGUM通过
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那