UVA10673 上下界问题

 1 #include <iostream>

 2 #include<cstdio>

 3 using namespace std;

 4 #define LL long long

 5 LL a,b,m,n,d;

 6 void ex_gcd(LL a,LL b,LL &x,LL &y,LL &d)

 7 {

 8     if(b==0){

 9         d=a,x=1,y=0;

10     }

11     else{

12         ex_gcd(b,a%b,x,y,d);

13         LL t=x;

14         x=y,y=t-a/b*y;

15     }

16 }

17 int main()

18 {

19     LL T;

20     cin>>T;

21     for(int i=0;i<T;i++)

22     {

23         LL x,y;

24         cin>>x>>y;

25         if(x%y==0){

26             cout<<1<<' '<<y-1<<endl;

27         }

28         else{

29             a=x/y,b=a+1;

30             ex_gcd(a,b,m,n,d);

31             cout<<m*x<<' '<<n*x<<endl;

32         }

33     }

34     return 0;

35 }

 

Theorem

For any two integers x and k there exists two more integers p and q such that:

<!--[if !vml]--><!--[endif]-->

It’s a fairly easy task to prove this theorem, so we’d not ask you to do that. We’d ask for something even easier! Given the values of x and k, you’d only need to find integers p and q that satisfies the given equation.

<!--[if !supportEmptyParas]-->      <!--[endif]-->

Input

The first line of the input contains an integer, T (1≤T≤1000) that gives you the number of test cases. In each of the following T lines you’d be given two positive integers x and k. You can safely assume that x and k will always be less than 108.

 

Output

For each of the test cases print two integers: p and q in one line. These two integers are to be separated by a single space. If there are multiple pairs of p and q that satisfy the equation, any one would do. But to help us keep our task simple, please make sure that the values, <!--[if !vml]--><!--[endif]--> and <!--[if !vml]--><!--[endif]-->fit in a 64 bit signed integer.

 

对于这道题目来说,要注意上下界的问题,当x%k==0时,它的上界和下界是一样的,因为答案有多种,输出一个即可,所以此时将答案定位1和k-1即可。

在x%k!=0时,它的上界和下界相差1,那么很自然的想到它们的最大公约数为1,所以可以直接用扩展欧几里德算法。

当然因为x是最大公约数的x倍,所以最后答案要乘上x

 

代码如下:

你可能感兴趣的:(uva)