- stable diffusion和GAN网络的区别,优点缺点是什么
爱好很多的算法工程师
SD大模型AIGC笔记
稳定扩散(stablediffusion)和生成对抗网络(GAN)是两种不同的深度学习方法。稳定扩散是一种无监督学习方法,用于图像超分辨率重建。它基于扩散过程模型,通过在不同的时间步骤中对图像进行重建来增加分辨率。该方法能够有效地增加图像的细节,并产生更高质量的图像。其优点包括:无监督学习:稳定扩散不需要使用任何带标签的训练数据,因此可以用于无监督任务。高分辨率重建:稳定扩散能够通过迭代过程逐渐增
- YOLOv8改进 | 2023注意力篇 | HAttention(HAT)超分辨率重建助力小目标检测 (全网首发)
Snu77
YOLOv8系列专栏YOLO人工智能深度学习python计算机视觉超分辨率重建目标检测
一、本文介绍本文给大家带来的改进机制是HAttention注意力机制,混合注意力变换器(HAT)的设计理念是通过融合通道注意力和自注意力机制来提升单图像超分辨率重建的性能。通道注意力关注于识别哪些通道更重要,而自注意力则关注于图像内部各个位置之间的关系。HAT利用这两种注意力机制,有效地整合了全局的像素信息,从而提供更为精确的结果(这个注意力机制挺复杂的光代码就700+行),但是效果挺好的也是10
- 基于深度学习的超分辨率综述
teacher_ma_
计算机视觉深度学习人工智能神经网络cnn
1.单图像超分辨率重建SISR方法框架由两部分组成,非线性映射学习和上采样模块。非线性映射学习模块负责完成LR到HR的映射,这过程中利用损失函数引导和监督学习的进程;上采样模块实现重建图像的放大,两个模块协同完成SISR1.1超分框架(1)前端上采样超分框架前端上采样避免在低维进行映射学习,降低了学习难度,但噪声和模糊也被放大,并且高维卷积运算增加计算量,消耗更多资源(2)后端上采样超分框架该框架
- 基于深度学习的单帧图像超分辨率重建综述
小蒋的技术栈记录
深度学习深度学习超分辨率重建人工智能
论文标题:基于深度学习的单帧图像超分辨率重建综述作者:吴靖,叶晓晶,黄峰,陈丽琼,王志锋,刘文犀发表日期:2022年9月阅读日期:2023.11.18研究背景:图像超分辨率重建是计算机视觉中的基本图像处理技术之一,不仅可以提高图像分辨率改善图像质量,还可以辅助其他计算机视觉任务.近年来,随着人工智能浪潮的兴起,基于深度学习的图像超分辨率重建也取得了显著进展.本文在简述图像超分辨率重建方法的基础上,
- 【图像超分辨率重建】——EnhanceNet论文精读笔记
Zency_SUN
图像超分辨率重建论文精读超分辨率重建计算机视觉人工智能
2017-EnhanceNet:SingleImageSuper-ResolutionThroughAutomatedTextureSynthesis(EnhanceNet)基本信息作者:MehdiS.M.SajjadiBernhardSch¨olkopfMichaelHirsch期刊:ICCV引用:*摘要:单一图像超分辨率是指从单一低分辨率输入推断出高分辨率图像的任务。传统上,这项任务的算法性能
- 基于深度学习的图像超分辨率重建
wjhua_223
#超分辨率人工智能技术方向
最近开展图像超分辨率(ImageSuperResolution)方面的研究,做了一些列的调研,并结合本人的理解总结成本博文~(本博文仅用于本人的学习笔记,不做商业用途)本博文涉及的paper已经打包,供各位看客下载哈~https://download.csdn.net/download/gwplovekimi/10728916目录超分辨率(SuperResolution,SR)传统的图像超分辨率重
- CVPR 2018
来自吐槽星
深度学习在图像超分辨率重建中的应用http://cvmart.net/community/article/detail/11使用CNN生成图像先验,实现更广泛场景的盲图像去模糊http://cvmart.net/community/article/detail/206用u-net训练一个模型:输入是一个静态的帧,输出的预测的五帧光流信息,模型在youtube数据集上训练。https://arxiv
- 【代码实践】HAT代码Window平台下运行实践记录
一的千分之一
【代码实践】python深度学习
HAT是CVPR2023上的自然图像超分辨率重建论文《activatingMorePixelsinImageSuper-ResolutionTransformer》所提出的模型。本文旨在记录在Window系统下运行该官方代码(https://github.com/XPixelGroup/HAT)的过程,中间会遇到一些问题,供大家参考。环境安装参考官方代码,进行环境安装pipinstall-rreq
- 深度学习在图像识别领域还有哪些应用?
matlabgoodboy
深度学习人工智能
深度学习在图像识别领域的应用非常广泛,除了之前提到的图像分类、目标检测、语义分割和图像生成,还有其他一些应用。图像超分辨率重建:深度学习技术可以用于提高图像的分辨率,例如通过使用生成对抗网络(GAN)和变分自编码器(VAE)等技术,可以将低分辨率的图像转换为高分辨率的图像,从而提高了图像的清晰度和质量。图像风格迁移:深度学习可以用于将一张图像的风格应用到另一张图像上,例如使用GAN模型可以将一张照
- 【图像超分辨率重建】——SwinIR论文阅读笔记
沉潜于
超分辨率重建笔记人工智能
SwinIR:ImageRestorationUsingSwinTransformer基本信息:期刊:ICCV2021摘要:图像恢复是一个长期存在的低级视觉问题,其目的是从低质量图像(例如,缩小、噪声和压缩图像)。虽然最先进的图像恢复方法是基于卷积神经网络,但很少有人尝试使用Transformers,这些Transformers在高级视觉任务中表现出令人印象深刻的性能。在本文中,我们提出了一个强基
- 计算机毕设 基于深度学习的图像超分辨率重建 - opencv python cnn
DanCheng-studio
毕业设计python毕设
文章目录0前言1什么是图像超分辨率重建2应用场景3实现方法4SRResNet算法原理5SRCNN设计思路6代码实现6.1代码结构组织6.2train_srresnet6.3训练效果7最后0前言这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。为了大家能够顺利以及最少的精力通过毕设,
- SwinIR Transformer训练教程(使用自己的数据集)
加斯顿工程师
深度学习深度学习神经网络transformer
使用自己的数据集训练SwinIRTransformerSwinIRTransformer图像超分辨率重建训练教程目录使用自己的数据集训练SwinIRTransformer一、使用MATLAB对数据集进行BICUBIC插值下采样二、使用MATLAB对数据集进行BICUBIC插值下采样三、训练3.1下载训练源代码3.2修改json文件3.3运行训练命令四、测试4.1网络结构4.2测试代码文章:http
- 【图像处理】基于MATLAB和SRCNN算法实现图像超分辨率重建
嵌入式职场
【MATLAB图像处理】图像处理matlab算法
目录基于MATLAB和SRCNN算法实现图像超分辨率重建基于MATLAB和SRCNN算法实现图像超分辨率重建以尝试使用MATLAB深度学习工具箱中的卷积神经网络(CNN)来进行图像超分辨率重建。具体地,您可以使用已经训练好的CNN模型或者自己构建CNN模型,并通过迭代训练来不断优化模型,提高超分辨率重建效果。一种常见的方法是使用基于卷积神经网络的图像超分辨率重建——SRCNN算法。SRCNN算法是
- m基于POCS算法的空域序列图像超分辨率重建matlab仿真
我爱C编程
MATLAB图像处理matlab超分辨率重建POCS空域序列图像
目录1.算法仿真效果2.MATLAB核心程序3.算法涉及理论知识概要4.完整MATLAB1.算法仿真效果matlab2022a仿真结果如下:2.MATLAB核心程序....................................................................................%POCS%POCS%POCS%POCSifsel==2%降低图像的
- 毕业设计-基于深度学习的模糊文字识别方法
HaiLang_IT
深度学习毕设选题教程图像识别毕业设计课程设计人工智能算法神经网络cnn
目录前言课题背景和意义实现技术思路一、相关理论基础二、实验数据集准备三、基于生成对抗网络的图像超分辨率重建实现效果图样例最后前言大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学
- SRGAN论文学习笔记
爱吃兔子的胡萝卜RR
深度学习超分辨率重建计算机视觉图像处理pytorch
《Photo-RealisticSingleImageSuper-ResolutionUsingaGenerativeAdversarialNetwork》是ChristianLedig等人于2017年发表于CVPR上的又一篇SR重建的论文,将生成对抗网络(GAN)用于图像超分辨率重建,在感知质量方面取得了巨大的进步,重建图像放大四倍后依然能够呈现清晰地纹理细节。基于监督学习的SR算法的不足之处:
- Pytorch搭建基于SRCNN图像超分辨率重建模型及论文总结
resumebb
图像超分辨率重建卷积深度学习计算机视觉机器学习
SRCNN(Super-ResolutionConvolutionalNeuralNetwork)论文出处:LearningaDeepConvolutionalNetworkforImageSuper-Resolution图像超分辨率重建,简言之能将一张低分辨率的图片,重建生成一张高分辨率的图片,该技术在遥感图像监测,医疗领域,车牌识别,人脸识别等多个领域起着很大的作用。SRCNN是首度将深度学习
- 深度学习用于图像超分辨率重建综述——超分辨率(一)
Cpp编程小茶馆
超分辨率超分辨率综述
文章目录DeepLearningforImageSuper-resolution:ASurvey超分辨简介最新进展1.超分网络的升采样结构2.可学习的升采样方法3.全局和局部网络结构设计4.损失函数设计5.批归一化6.课程学习7.多级监督8.其他网络设计和学习策略9.无监督图像超分辨率10.超分在专有领域的应用发展趋势1.网络结构设计2.学习策略3.评价指标4.无监督的图像超分5.实际场景中的图像
- python十行代码打开本地图片_十行代码搞定目标检测
weixin_39639505
原标题:十行代码搞定目标检测大数据文摘出品编译:邢畅、宁静计算机视觉是人工智能的一个重要领域,是关于计算机和软件系统的科学,可以对图像和场景进行识别、理解。计算机视觉还包括图像识别、目标检测、图像生成、图像超分辨率重建等多个领域。由于存在大量的实际需求,目标检测可能是计算机视觉中最有意义的领域。目标检测是指计算机和软件系统对图像或场景中的目标进行定位和识别的任务。目标检测已广泛应用于人脸检测、车辆
- 超分辨率——DRCN
weixin_44939146
基于深度学习的SR超分辨率深度递归卷积神经网络
超分辨率——DRCN@TOC我们提出一种基于深度递归卷积神经网络进行图像超分辨率重建的模型。我们的网络有一个很深的递归层,多大16层。在额外的卷积层不引入新的变量的情况下,增加递归层数可以提高超分辨率图像恢复性能。由于梯度消失和梯度爆炸,用标准的梯度下降法学习DRCN是困难的。为了减轻训练的困难程度,作者提出两个改进办法:递归监督和跃层连接。对于SR问题,卷积网络的感受野决定了上下文信息的数量,上
- 【Tikhonov】基于Tikhonov正则化的图像超分辨率重建
fpga和matlab
MATLAB板块2:图像-特征提取处理超分辨率重建大数据人工智能Tikhonov正则化
1.软件版本matlab2013b2.系统原理对于图像超分辨率重建的问题,常常涉及到大规模的方程组求解,且方程的维数往往很大。所以正则化方法的求解算法中常用到迭代算法。这里主要说明一下以迭代Tikhonov正则化方法为例,该方法是利用正则参数的某些先验性质,同时对精确解施加光滑性的条件,按照后验选择策略从而改进收敛速度并决定正则参数。首先进行收敛性分析。直接得到复原结果但是由于逆矩阵的求解十分复杂
- 超分辨率python_python在图像超分辨率重建中的应用
weixin_39875192
超分辨率python
python在图像超分辨率重建中的应用洪华秀[1];【期刊名称】《计算机产品与流通》【年(卷),期】2019(000)002【摘要】图像超分辨率重建技术是低分辨率图像经过一系列算法处理后转换成高分辨率图像的过程,随着图像数据的应用领域不断延伸,这一技术也逐渐成了图像处理研究热点之一。近几年Python语言在人工智能领域逐渐占领榜首,它的优越性在于强大的第三方数据处理工具的支持。本文在图像超分辨率重
- 【图像超分辨率重建】——SwinIR论文精读笔记
Zency_SUN
图像超分辨率重建论文精读超分辨率重建计算机视觉深度学习
2021-SwinIR:ImageRestorationUsingSwinTransformer(SwinIR)基本信息作者:JingyunLiang,JiezhangCao,GuoleiSun,KaiZhang,LucVanGool,RaduTimofte期刊:ICCV引用:123摘要:图像恢复是一个长期存在的低级视觉问题,旨在从低质量图像(例如,缩小、噪声和压缩图像)中恢复高质量图像。虽然最先
- 【图像超分辨率重建】——HAT论文精读笔记
Zency_SUN
图像超分辨率重建论文精读超分辨率重建深度学习人工智能
2022-ActivatingMorePixelsinImageSuper-ResolutionTransformer(HAT)基本信息作者:XiangyuChen,XintaoWang,JiantaoZhou,andChaoDong期刊:引用:摘要:基于Transformer的方法在图像超分辨率等低级视觉任务中表现出令人印象深刻的性能。然而,我们发现这些网络只能通过归因分析利用有限空间范围的输入
- 【图像超分辨率重建】——SAN论文精读笔记
Zency_SUN
图像超分辨率重建论文精读超分辨率重建深度学习人工智能
2019-Second-orderAttentionNetworkforSingleImageSuper-Resolution(SAN)基本信息作者:TaoDai,JianruiCai,YongbingZhang,Shu-TaoXia,LeiZhang期刊:CVPR引用:摘要:近年来,深度卷积神经网络(CNN)在单图像超分辨率(SISR)中得到了广泛的研究,并取得了显著的性能。然而,大多数现有的基
- resnet50代码_十行代码搞定目标检测
weixin_39900676
resnet50代码显著性目标检测matlab代码
大数据文摘出品编译:邢畅、宁静计算机视觉是人工智能的一个重要领域,是关于计算机和软件系统的科学,可以对图像和场景进行识别、理解。计算机视觉还包括图像识别、目标检测、图像生成、图像超分辨率重建等多个领域。由于存在大量的实际需求,目标检测可能是计算机视觉中最有意义的领域。目标检测是指计算机和软件系统对图像或场景中的目标进行定位和识别的任务。目标检测已广泛应用于人脸检测、车辆检测、人流量统计、网络图像、
- 【图像超分辨率重建】——SRGAN/SRResNet论文精读笔记
Zency_SUN
超分辨率重建人工智能图像处理
2017-Photo-RealisticSingleImageSuper-ResolutionUsingaGenerativeAdversarialNetwork(SRGAN/SRResNet)基本信息作者:ChristianLedig,LucasTheis,FerencHusz´ar,JoseCaballero,AndrewCunningham,AlejandroAcosta,AndrewAit
- 【图像超分辨率重建】——HAN论文精读笔记
Zency_SUN
超分辨率重建计算机视觉深度学习
2020-SingleImageSuper-ResolutionviaaHolisticAttentionNetwork(HAN)基本信息作者:BenNiu;WeileiWen;WenqiRen,XiangdeZhang,LianpingYang;ShuzhenWang,KaihaoZhang,XiaochunCao,andHaifengShen期刊:ECCV2020引用:*摘要:信息性特征在单幅
- MATLAB环境下基于深度学习VDSR的单图像超分辨率重建
哥廷根数学学派
深度学习图像处理计算机视觉深度学习人工智能
之前主要研究现代信号处理的,深度学习嘛,一个大号/深层的,现代的,黑箱的,信号/图像处理器,所以,我刚才说了,作为一个研究现代信号处理的,顺便搞些深度学习也是顺理成章的。该算法可能在一维信号时频谱超分辨率重建方面有用,之前做过一些相关的东西。程序运行环境为MATLABR2018A。面包多第三方下载链接正在为您运送作品详情进入正题,本文主要讲解如何训练一个所谓的Very-DeepSuper-Reso
- 基于深度学习的图像超分辨率重建技术的研究
无止境x
超分辨率
1超分辨率重建技术的研究背景与意义图像分辨率是一组用于评估图像中蕴含细节信息丰富程度的性能参数,包括时间分辨率、空间分辨率及色阶分辨率等,体现了成像系统实际所能反映物体细节信息的能力。相较于低分辨率图像,高分辨率图像通常包含更大的像素密度、更丰富的纹理细节及更高的可信赖度。但在实际上中,受采集设备与环境、网络传输介质与带宽、图像退化模型本身等诸多因素的约束,我们通常并不能直接得到具有边缘锐化、无成
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分