python中绘制三维图需要将坐标系声明为3d
。
球面方程为
x 2 + y 2 + z 2 = R 2 x^2+y^2+z^2=R^2 x2+y2+z2=R2
写为极坐标形式为
x = R sin θ cos φ y = R sin θ sin φ z = R cos θ \begin{aligned} x&=R\sin\theta\cos\varphi\\ y&=R\sin\theta\sin\varphi\\ z&=R\cos\theta\end{aligned} xyz=Rsinθcosφ=Rsinθsinφ=Rcosθ
令 R = 1 R=1 R=1,则画图为
代码如下
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> theta = np.arange(0,6.4,0.1).reshape(64,1)
>>> phi = np.arange(0,3.2,0.1).reshape(1,32)
>>> x = np.sin(theta)*np.cos(phi)
>>> y = np.sin(theta)*np.sin(phi)
>>> z = np.cos(theta)
>>> ax = plt.gca(projection='3d')
>>> ax.plot_surface(x,y,z)
<mpl_toolkits.mplot3d.art3d.Poly3DCollection object at 0x000001CECF13A730>
>>> plt.show()
二次曲面共有九种,代码均与椭球曲面类似,为了加强立体感,可在画图的时候设置颜色映射,下列各图部分用到
from matplotlib import cm
#...
ax.plot_surface(x,y,z,cmap=cm.coolwarm)
在上面各式中,椭圆锥面、单叶双曲面、双叶双曲面具有极为相似的表达式
x 2 a 2 + y 2 b 2 − z 2 c 2 = { < 0 双 叶 双 曲 面 = 0 椭 圆 锥 面 > 0 单 叶 双 曲 面 \frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=\left\{\begin{aligned} &<0&双叶双曲面\\ &=0&椭圆锥面\\ &>0&单叶双曲面\\ \end{aligned}\right. a2x2+b2y2−c2z2=⎩⎪⎨⎪⎧<0=0>0双叶双曲面椭圆锥面单叶双曲面
故可绘制动态图来表示这一过程,由于animation中无法绘制plot_surface
,所以采用将单张图片生成gif的方式。
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
import imageio
theta = np.arange(0,6.4,0.1)
z = np.arange(-2,2,0.02).reshape(200,1)
gifImgs = []
fig = plt.figure()
for i in np.arange(-1,1,0.02):
theta = np.arange(0,6.4,0.1).reshape(1,64)
Z = np.repeat(z,64).reshape(200,64)
x = np.sqrt(z**2+i)*np.cos(theta)
y = np.sqrt(z**2+i)*np.sin(theta)
ax = plt.gca(projection='3d')
ax.plot_surface(x,y,Z,cmap=cm.coolwarm)
plt.savefig("%.2f.jpg" % i)
gifImgs.append(imageio.imread("%.2f.jpg" % i))
imageio.mimsave("test.gif",gifImgs,fps=5)