现在我们有一个函数add,当执行它时我希望会自动打印当前执行的是add函数
def print_log(func):
def wrapper(x,y):
print('将要执行的是函数%s' %func.__name__)
func(x,y)
print('函数%s已执行完毕' %func.__name__)
return wrapper
@print_log
def add(x,y):
print('%s + %s = %s' %(x,y,x+y))
执行结果就变成了这样
将要执行的是函数add
1 + 2 = 3
函数add已执行完毕
又是这个函数add,现在我们要统计这个函数执行的时间
import time
def timer(func):
def wrapper(x,y):
t1 = time.time()
func(x,y)
t2 = time.time()
print('执行本函数所用时间为:%s秒' %(t2-t1))
return wrapper
@timer
def add(x,y):
time.sleep(3)
print('%s + %s = %s' %(x,y,x+y))
add(2,3)
执行结果是这样的
2 + 3 = 5
执行本函数所用时间为:3.0001046657562256秒
装饰器本身也是函数,作为函数,如果不能传入参数,那它和咸鱼有什么区别。
让我们对第一个函数稍加修改
def print_log(gender=None):
def wrapper(func):
def deco(x,y):
if gender == 'lady':
print('您好,lady')
print('将要执行的是函数%s' %func.__name__)
func(x,y)
print('函数%s已执行完毕' %func.__name__)
else:
print('您不是我的主人!')
return deco
return wrapper
@print_log(lady)
def add(x,y):
print('%s + %s = %s' %(x,y,x+y))
add(2,3)
这样装饰器就带上了参数
前面的所有装饰器都是带在了函数上面,其实装饰器也能带在类上面。
我们来用这种方法实现第一个装饰器的功能
class host(object):
def __init__(self,func):
self.func = func
def __call__(self, *args, **kwargs):
print('正在运行的函数是%s()' %(self.func.__name__))
return self.func(*args, **kwargs)
@host
def hello():
print('hello')
hello()
输出是这样的
正在运行的函数是hello()
hello
class print_log(object):
def __init__(self, level):
self.level = level
def __call__(self, func):
def wrapper(*args, **kwargs):
print("等级%s 正在执行的函数是%s" %(self.level, func.__name__))
func(*args, **kwargs)
return wrapper
@print_log(level='1')
def hello(something):
print('hello %s' %something)
hello('world')
执行结果是这样的
等级1 正在执行的函数是hello
hello world
绝大多数装饰器都是基于函数和闭包实现的,但这并非制造装饰器的唯一方式。
事实上,Python 对某个对象是否能通过装饰器( @decorator)形式使用只有一个要求:decorator 必须是一个“可被调用(callable)的对象。
对于这个 callable 对象,我们最熟悉的就是函数了。
除函数之外,类也可以是 callable 对象,只要实现了__call__ 函数(上面几个例子已经接触过了)。
还有容易被人忽略的偏函数其实也是 callable 对象。
接下来就来说说,如何使用 类和偏函数结合实现一个与众不同的装饰器。
如下所示,DelayFunc 是一个实现了 call 的类,delay 返回一个偏函数,在这里 delay 就可以做为一个装饰器。(以下代码摘自 Python工匠:使用装饰器的小技巧)
import time
import functools
class DelayFunc:
def init(self, duration, func):
self.duration = duration
self.func = func
def __call__(self, *args, **kwargs):
print(f'Wait for {self.duration} seconds...')
time.sleep(self.duration)
return self.func(*args, **kwargs)
def eager_call(self, *args, **kwargs):
print('Call without delay')
return self.func(*args, **kwargs)
def delay(duration):
“”"
装饰器:推迟某个函数的执行。
同时提供 .eager_call 方法立即执行
“”"
# 此处为了避免定义额外函数,
# 直接使用 functools.partial 帮助构造 DelayFunc 实例
return functools.partial(DelayFunc, duration)
我们的业务函数很简单,就是相加
@delay(duration=2)
def add(a, b):
return a+b
来看一下执行过程
add # 可见 add 变成了 Delay 的实例
<main.DelayFunc object at 0x107bd0be0>add(3,5) # 直接调用实例,进入 call
Wait for 2 seconds…
8add.func # 实现实例方法
用 Python 写单例模式的时候,常用的有三种写法。其中一种,是用装饰器来实现的。
以下便是我自己写的装饰器版的单例写法。
instances = {}
def singleton(cls):
def get_instance(*args, **kw):
cls_name = cls.name
print(’===== 1 ‘)
if not cls_name in instances:
print(’= 2 ====’)
instance = cls(*args, **kw)
instances[cls_name] = instance
return instances[cls_name]
return get_instance
@singleton
class User:
_instance = None
def __init__(self, name):
print('===== 3 ====')
self.name = name
可以看到我们用singleton 这个装饰函数来装饰 User 这个类。装饰器用在类上,并不是很常见,但只要熟悉装饰器的实现过程,就不难以实现对类的装饰。在上面这个例子中,装饰器就只是实现对类实例的生成的控制而已。
其实例化的过程,你可以参考我这里的调试过程,加以理解。
在 functools 标准库中有提供一个 wraps 装饰器,你应该也经常见过,那他有啥用呢?
先来看一个例子
def wrapper(func):
def inner_function():
pass
return inner_function
@wrapper
def wrapped():
pass
print(wrapped.name)
#inner_function
为什么会这样子?不是应该返回 func 吗?
这也不难理解,因为上边执行func 和下边 decorator(func) 是等价的,所以上面 func.name 是等价于下面decorator(func).name 的,那当然名字是 inner_function
def wrapper(func):
def inner_function():
pass
return inner_function
def wrapped():
pass
print(wrapper(wrapped).name)
#inner_function
那如何避免这种情况的产生?方法是使用 functools .wraps 装饰器,它的作用就是将 被修饰的函数(wrapped) 的一些属性值赋值给 修饰器函数(wrapper) ,最终让属性的显示更符合我们的直觉。
from functools import wraps
def wrapper(func):
@wraps(func)
def inner_function():
pass
return inner_function
@wrapper
def wrapped():
pass
print(wrapped.name)
准确点说,wraps 其实是一个偏函数对象(partial),源码如下
def wraps(wrapped,
assigned = WRAPPER_ASSIGNMENTS,
updated = WRAPPER_UPDATES):
return partial(update_wrapper, wrapped=wrapped,
assigned=assigned, updated=updated)
可以看到wraps其实就是调用了一个函数update_wrapper,知道原理后,我们改写上面的代码,在不使用 wraps的情况下,也可以让 wrapped.name 打印出 wrapped,代码如下:
from functools import update_wrapper
WRAPPER_ASSIGNMENTS = (‘module’, ‘name’, ‘qualname’, ‘doc’,
‘annotations’)
def wrapper(func):
def inner_function():
pass
update_wrapper(inner_function, func, assigned=WRAPPER_ASSIGNMENTS)
return inner_function
@wrapper
def wrapped():
pass
print(wrapped.name)
10. 内置装饰器:property
以上,我们介绍的都是自定义的装饰器。
其实Python语言本身也有一些装饰器。比如property这个内建装饰器,我们再熟悉不过了。
它通常存在于类中,可以将一个函数定义成一个属性,属性的值就是该函数return的内容。
通常我们给实例绑定属性是这样的
class Student(object):
def init(self, name, age=None):
self.name = name
self.age = age
xiaoming = Student(“小明”)
xiaoming.age=25
xiaoming.age
del xiaoming.age
但是稍有经验的开发人员,一下就可以看出,这样直接把属性暴露出去,虽然写起来很简单,但是并不能对属性的值做合法性限制。为了实现这个功能,我们可以这样写。
class Student(object):
def init(self, name):
self.name = name
self.name = None
def set_age(self, age):
if not isinstance(age, int):
raise ValueError('输入不合法:年龄必须为数值!')
if not 0 < age < 100:
raise ValueError('输入不合法:年龄范围必须0-100')
self._age=age
def get_age(self):
return self._age
def del_age(self):
self._age = None
xiaoming = Student(“小明”)
xiaoming.set_age(25)
xiaoming.get_age()
xiaoming.del_age()
上面的代码设计虽然可以变量的定义,但是可以发现不管是获取还是赋值(通过函数)都和我们平时见到的不一样。
按照我们思维习惯应该是这样的。
xiaoming.age = 25
xiaoming.age
那么这样的方式我们如何实现呢。请看下面的代码。
class Student(object):
def init(self, name):
self.name = name
self.name = None
@property
def age(self):
return self._age
@age.setter
def age(self, value):
if not isinstance(value, int):
raise ValueError('输入不合法:年龄必须为数值!')
if not 0 < value < 100:
raise ValueError('输入不合法:年龄范围必须0-100')
self._age=value
@age.deleter
def age(self):
del self._age
xiaoming = Student(“小明”)
xiaoming.age = 25
xiaoming.age
del xiaoming.age
用@property装饰过的函数,会将一个函数定义成一个属性,属性的值就是该函数return的内容。同时,会将这个函数变成另外一个装饰器。就像后面我们使用的@age.setter和@age.deleter。
@age.setter 使得我们可以使用XiaoMing.age = 25这样的方式直接赋值。
@age.deleter 使得我们可以使用del XiaoMing.age这样的方式来删除属性。
property 的底层实现机制是「描述符」,为此我还写过一篇文章。
这里也介绍一下吧,正好将这些看似零散的文章全部串起来。
如下,我写了一个类,里面使用了 property 将 math 变成了类实例的属性
class Student:
def init(self, name):
self.name = name
@property
def math(self):
return self._math
@math.setter
def math(self, value):
if 0 <= value <= 100:
self._math = value
else:
raise ValueError("Valid value must be in [0, 100]")
为什么说 property 底层是基于描述符协议的呢?通过 PyCharm 点击进入 property 的源码,很可惜,只是一份类似文档一样的伪源码,并没有其具体的实现逻辑。
不过,从这份伪源码的魔法函数结构组成,可以大体知道其实现逻辑。
这里我自己通过模仿其函数结构,结合「描述符协议」来自己实现类 property 特性。
代码如下:
class TestProperty(object):
def __init__(self, fget=None, fset=None, fdel=None, doc=None):
self.fget = fget
self.fset = fset
self.fdel = fdel
self.__doc__ = doc
def __get__(self, obj, objtype=None):
print("in __get__")
if obj is None:
return self
if self.fget is None:
raise AttributeError
return self.fget(obj)
def __set__(self, obj, value):
print("in __set__")
if self.fset is None:
raise AttributeError
self.fset(obj, value)
def __delete__(self, obj):
print("in __delete__")
if self.fdel is None:
raise AttributeError
self.fdel(obj)
def getter(self, fget):
print("in getter")
return type(self)(fget, self.fset, self.fdel, self.__doc__)
def setter(self, fset):
print("in setter")
return type(self)(self.fget, fset, self.fdel, self.__doc__)
def deleter(self, fdel):
print("in deleter")
return type(self)(self.fget, self.fset, fdel, self.__doc__)
然后 Student 类,我们也相应改成如下
class Student:
def init(self, name):
self.name = name
# 其实只有这里改变
@TestProperty
def math(self):
return self._math
@math.setter
def math(self, value):
if 0 <= value <= 100:
self._math = value
else:
raise ValueError("Valid value must be in [0, 100]")
为了尽量让你少产生一点疑惑,我这里做两点说明:
使用TestProperty装饰后,math 不再是一个函数,而是TestProperty类的一个实例。所以第二个math函数可以使用 math.setter 来装饰,本质是调用TestProperty.setter 来产生一个新的 TestProperty 实例赋值给第二个math。
第一个 math 和第二个 math 是两个不同 TestProperty 实例。但他们都属于同一个描述符类(TestProperty),当对 math 对于赋值时,就会进入 TestProperty.set,当对math 进行取值里,就会进入 TestProperty.get。仔细一看,其实最终访问的还是Student实例的 _math 属性。
说了这么多,还是运行一下,更加直观一点。
in setter
s1.math = 90
in sets1.math
in get
90
如对上面代码的运行原理,有疑问的同学,请务必结合上面两点说明加以理解,那两点相当关键。
读完并理解了上面的内容,你可以说是Python高手了。别怀疑,自信点,因为很多人都不知道装饰器有这么多用法呢。
在我看来,使用装饰器,可以达到如下目的:
使代码可读性更高,逼格更高;
代码结构更加清晰,代码冗余度更低;
刚好我在最近也有一个场景,可以用装饰器很好的实现,暂且放上来看看。
这是一个实现控制函数运行超时的装饰器。如果超时,则会抛出超时异常。
有兴趣的可以看看。
import signal
class TimeoutException(Exception):
def init(self, error=‘Timeout waiting for response from Cloud’):
Exception.init(self, error)
def timeout_limit(timeout_time):
def wraps(func):
def handler(signum, frame):
raise TimeoutException()
def deco(*args, **kwargs):
signal.signal(signal.SIGALRM, handler)
signal.alarm(timeout_time)
func(*args, **kwargs)
signal.alarm(0)
return deco
return wraps
以上,便是我对装饰器的所有分享。
非常感谢你能阅读到这里,这篇文章我写了很久,算是比较干货的那种,文章有些长,但还是希望花点时间把这些知识点都搞明白,而不要只是收藏。