模型介绍见这里。
clc;clear;close all;
%% 初始化种群
N = 500; % 初始种群个数
d = 24; % 空间维数
ger = 300; % 最大迭代次数
% 设置位置参数限制(矩阵的形式可以多维)
vlimit = [-0.5, 0.5;-0.5, 0.5;-0.5, 0.5;-0.5, 0.5;-0.5, 0.5;-0.5, 0.5;
-0.5, 0.5;-0.5, 0.5;-0.5, 0.5;-0.5, 0.5;-0.5, 0.5;-0.5, 0.5;
-0.5, 0.5;-0.5, 0.5;-0.5, 0.5;-0.5, 0.5;-0.5, 0.5;-0.5, 0.5;
-0.5, 0.5;-0.5, 0.5;-0.5, 0.5;-0.5, 0.5;-0.5, 0.5;-0.5, 0.5;]; % 设置速度限制
c_1 = 0.8; % 惯性权重
c_2 = 0.5; % 自我学习因子
c_3 = 0.5; % 群体学习因子
for i = 1:d
x(:,i) = limit(i, 1) + (limit(i, 2) - limit(i, 1)) * rand(N, 1);%初始种群的位置
end
v = 0.5*rand(N, d); % 初始种群的速度
xm = x; % 每个个体的历史最佳位置
ym = zeros(1, d); % 种群的历史最佳位置
fxm = 100000*ones(N, 1); % 每个个体的历史最佳适应度
fym = 10000; % 种群历史最佳适应度
%% 粒子群工作
iter = 1;
times = 1;
record = zeros(ger, 1); % 记录器
while iter <= ger
for i=1:N
fx(i) = calfit(x(i,:)) ; % 个体当前适应度
end
for i = 1:N
if fxm(i) > fx(i)
fxm(i) = fx(i); % 更新个体历史最佳适应度
xm(i,:) = x(i,:); % 更新个体历史最佳位置
end
end
if fym > min(fxm)
[fym, nmax] = min(fxm); % 更新群体历史最佳适应度
ym = xm(nmax, :); % 更新群体历史最佳位置
end
v = v * c_1 + c_2 * rand *(xm - x) + c_3 * rand *(repmat(ym, N, 1) - x);% 速度更新
% 边界速度处理
for i=1:d
for j=1:N
if v(j,i)>vlimit(i,2)
v(j,i)=vlimit(i,2);
end
if v(j,i) < vlimit(i,1)
v(j,i)=vlimit(i,1);
end
end
end
x = x + v;% 位置更新
% 边界位置处理
for i=1:d
for j=1:N
if x(j,i)>limit(i,2)
x(j,i)=limit(i,2);
end
if x(j,i) < limit(i,1)
x(j,i)=limit(i,1);
end
end
end
record(iter) = fym;%最大值记录
iter = iter+1;
times=times+1;
end
disp(['最小值:',num2str(fym)]);
disp(['变量取值:',num2str(ym)]);
figure
plot(record)
xlabel('迭代次数');
ylabel('适应度值')
《基于BP神经网络的宁夏水资源需求量预测》