LeNet网络实现训练fashion-mnist数据集

        LeNet作为现在各种卷积神经网络的始祖,其网络结构虽然只有7层,却包含了卷积神经网络的基本组件,具体关于LeNet详解请参考:        LeNet详解_Charles的博客-CSDN博客_lenet

        今天我们来实现如何不需要调参就可以提高LeNet在数据集fashion-mnist上的训练精度和测试精度。

        所用代码为李沐所编写的《动手学深度学习》《动手学深度学习》 — 动手学深度学习 2.0.0-alpha2 documentation

所需要深度学习框架为torch,使用GPU训练

包为d2l 安装方法为:

pip install d2l

        我们实例化一个Sequential块,并将所需要的成连接在一起,将原始模型做了一些改动,去掉了最后一层的高斯激活。

import torch
from torch import nn
from d2l import torch as d2l


class Reshape(torch.nn.Module):
    def forward(self, x):
        return x.view(-1, 1, 28, 28)

net = torch.nn.Sequential(
    Reshape(),
    nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10))

接下来,输入一个28*28的单通道图像,打印在没一层的输出形状来检查模型。

X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape: \t',X.shape)

输出如下:

Reshape output shape:        torch.Size([1, 1, 28, 28])
Conv2d output shape:         torch.Size([1, 6, 28, 28])
Sigmoid output shape:        torch.Size([1, 6, 28, 28])
AvgPool2d output shape:      torch.Size([1, 6, 14, 14])
Conv2d output shape:         torch.Size([1, 16, 10, 10])
Sigmoid output shape:        torch.Size([1, 16, 10, 10])
AvgPool2d output shape:      torch.Size([1, 16, 5, 5])
Flatten output shape:        torch.Size([1, 400])
Linear output shape:         torch.Size([1, 120])
Sigmoid output shape:        torch.Size([1, 120])
Linear output shape:         torch.Size([1, 84])
Sigmoid output shape:        torch.Size([1, 84])
Linear output shape:         torch.Size([1, 10])

        通过检查打印出的每层输出,判断模型没有问题接下来进行模型训练,首先我们需要设置batch_size,下载数据集Fashion-MNIST。

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)

        接下来设置使用GPU来进行训练,train_ch6()为d2l包中内置函数,具体查看《动手学深度学习》6.6节。

#@save
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
    """用GPU训练模型(书中在第六章定义)。"""
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    print('training on', device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    timer, num_batches = d2l.Timer(), len(train_iter)
    for epoch in range(num_epochs):
        # 训练损失之和,训练准确率之和,范例数
        metric = d2l.Accumulator(3)
        net.train()
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
    print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
          f'test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(device)}')

设置学习率,迭代次数

lr, num_epochs = 0.9, 10
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

开始训练,结果如下:

LeNet网络实现训练fashion-mnist数据集_第1张图片

 

 
  

你可能感兴趣的:(神经网络,深度学习,pytorch)