机器学习/深度学习实战——kaggle房价预测比赛实战(机器学习回归算法)

文章目录

    • 3. 构建模型
      • 3.1 使用lazyPredict寻找最优拟合算法
      • 3.2 超参数调整
      • 3.3 Ridge Regression
      • 3.4 Lasso Regression
      • 3.5 Gradient Boosting Regressor
      • 3.6 XGBRegressor
      • 3.7 LGBMRegressor
      • 3.8 StackingRegressor
      • 3. 9 保存模型
    • 4. 输出预测结果


相关BLOG:

  • 第1个blog:数据分析
  • 第2个blog:数据预处理
  • 第3个blog:应用机器学习回归分析算法进行建模和预测
  • 第4个blog:应用pytorch设计深度学习模型

相关数据及比赛地址:
kaggle 比赛:House Prices - Advanced Regression Techniques

数据下载地址:百度网盘 提取码: w2t6


3. 构建模型

3.1 使用lazyPredict寻找最优拟合算法

lazyregressor输出结果说明:

    1. Adjusted R-Squared:校正决定系数
      R a d j u s t e d 2 = 1 − ( 1 − R 2 ) ( n − 1 ) n − p − 1 R^2_{adjusted} = 1 - \frac{(1-R^2)(n-1)}{n-p-1} Radjusted2=1np1(1R2)(n1)
      其中n为样本数量,p为特征数量。Adjusted R-Square系取值范围为负无穷到1,大多数是0~1,值越大越好。
    1. R-Square(决定系数)
      R 2 = 1 − ∑ ( Y a c t u a l − Y p r e d i c t ) 2 ∑ ( Y a c t u a l − Y m e a n ) 2 R^2 = 1 - \frac{\sum(Y_{actual} - Y_{predict})^2}{\sum({Y_{actual} - Y_{mean})^2}{}} R2=1(YactualYmean)2(YactualYpredict)2
      此处的R为相关系数,相关系数的平方即R-Square。R-Square表示该模型能够拟合的“变化程度”,占真实数据的“变化程度”的比例。一般认为,R-Square越大越好
  • 3)RMSE:均方根误差
    R M S E ( X , h ) = 1 m ∑ i = 1 m ( h ( x i ) − y i ) 2 RMSE(X,h) = \sqrt{\frac{1}{m}\sum_{i=1}^{m}{(h(x_i) - y_i)^2}} RMSE(X,h)=m1i=1m(h(xi)yi)2

参考文章:
(机器学习)如何评价回归模型?——Adjusted R-Square(校正决定系数)
Lazy Predict:一行代码完成所有sklearn模型的拟合和评估

x_train1,x_test1,y_train1,y_test1 = train_test_split(X_train,y_train,test_size=0.25)
reg = LazyRegressor(verbose=0,ignore_warnings=True,custom_metric=None)
train,test = reg.fit(x_train1,x_test1,y_train1,y_test1)
test
Adjusted R-Squared R-Squared RMSE Time Taken
Model
HuberRegressor 0.62 0.90 0.11 0.10
ElasticNetCV 0.58 0.89 0.12 0.47
LassoCV 0.58 0.89 0.12 0.49
GradientBoostingRegressor 0.55 0.88 0.12 0.47
BayesianRidge 0.55 0.88 0.12 0.14
PoissonRegressor 0.54 0.88 0.13 0.04
GeneralizedLinearRegressor 0.54 0.88 0.13 0.02
TweedieRegressor 0.54 0.88 0.13 0.02
GammaRegressor 0.54 0.88 0.13 0.02
HistGradientBoostingRegressor 0.53 0.88 0.13 0.82
LGBMRegressor 0.52 0.88 0.13 0.08
RidgeCV 0.52 0.88 0.13 0.07
Ridge 0.51 0.87 0.13 0.02
LassoLarsCV 0.49 0.87 0.13 0.20
LinearSVR 0.47 0.86 0.13 0.45
ExtraTreesRegressor 0.47 0.86 0.14 1.46
RandomForestRegressor 0.45 0.86 0.14 1.32
OrthogonalMatchingPursuit 0.41 0.85 0.14 0.02
XGBRegressor 0.40 0.84 0.14 0.19
LassoLarsIC 0.39 0.84 0.14 0.07
NuSVR 0.36 0.83 0.15 0.72
OrthogonalMatchingPursuitCV 0.32 0.82 0.15 0.05
SVR 0.31 0.82 0.15 0.20
BaggingRegressor 0.30 0.82 0.15 0.15
PassiveAggressiveRegressor 0.27 0.81 0.16 0.03
LarsCV 0.26 0.81 0.16 0.56
AdaBoostRegressor 0.21 0.80 0.16 0.27
SGDRegressor 0.05 0.75 0.18 0.05
KNeighborsRegressor -0.04 0.73 0.19 0.18
ExtraTreeRegressor -0.29 0.67 0.21 0.04
DecisionTreeRegressor -0.41 0.64 0.22 0.05
Lasso -2.90 -0.01 0.37 0.06
ElasticNet -2.90 -0.01 0.37 0.04
DummyRegressor -2.90 -0.01 0.37 0.02
LassoLars -2.90 -0.01 0.37 0.02
MLPRegressor -35.49 -8.42 1.12 1.69
GaussianProcessRegressor -4159.81 -1073.50 11.96 0.25
KernelRidge -4217.15 -1088.30 12.04 0.04
LinearRegression -32618686027315109953536.00 -8423506831229725966336.00 33488872000.27 0.11
TransformedTargetRegressor -32618686027315109953536.00 -8423506831229725966336.00 33488872000.27 0.02
RANSACRegressor -95835413005320964800512.00 -24748705556319151587328.00 57402432649.95 3.64
Lars -2708399284498913352297337244581162553831478046... -6994217932497193705011541606563145240878470974... 30515720854749324937003008.00 0.12

选择精度高而用时少的算法(嗯?我是那种缺时间的人么,所以先随便选择几种算法做测试):

  • HuberRegressor
  • ElasticNetCV
  • LassoCV
  • GradientBoostingRegressor
  • BayesianRidge

3.2 超参数调整

K-折交叉验证

RANDOM_SEED = 1 # 给个种子,方便复现

# 10-fold CV
kfolds = KFold(n_splits=10,shuffle=True,random_state=RANDOM_SEED)
def tune(objective):
    study = optuna.create_study(direction='maximize')
    study.optimize(objective,n_trials=100)
    
    params = study.best_params
    best_score = study.best_value
    print(f"Best score: {
       best_score} \nOptimized parameters: {
       params}")
    return params

3.3 Ridge Regression

def ridge_objective(trial):
    _alpha = trial.suggest_float("alpha",0.1,20)
    ridge = Ridge(alpha=_alpha,random_state=RANDOM_SEED)
    score = cross_val_score(
        ridge,X_train,y_train, cv=kfolds, scoring="neg_root_mean_squared_error"
    ).mean()
    return score

ridge_params = {
     'alpha': 19.997759851201025}
ridge = Ridge(**ridge_params, random_state=RANDOM_SEED)
ridge.fit(X_train,y_train)
Ridge(alpha=19.997759851201025, random_state=1)

3.4 Lasso Regression

def lasso_objective(trial):
    _alpha = trial.suggest_float("alpha", 0.0001, 1)
    lasso = Lasso(alpha=_alpha, random_state=RANDOM_SEED)
    score = cross_val_score(
        lasso,X_train,y_train, cv=kfolds, scoring="neg_root_mean_squared_error"
    ).mean()
    return score

# Best score: -0.13319435700230317 
lasso_params = {
     'alpha': 0.0006224224345371836}
lasso = Lasso(**lasso_params, random_state=RANDOM_SEED)
lasso.fit(X_train,y_train)
Lasso(alpha=0.0006224224345371836, random_state=1)

3.5 Gradient Boosting Regressor

def gbr_objective(trial):
    _n_estimators = trial.suggest_int("n_estimators", 50, 2000)
    _learning_rate = trial.suggest_float("learning_rate", 0.01, 1)
    _max_depth = trial.suggest_int("max_depth", 1, 20)
    _min_samp_split = trial.suggest_int("min_samples_split", 2, 20)
    _min_samples_leaf = trial.suggest_int("min_samples_leaf", 2, 20)
    _max_features = trial.suggest_int("max_features", 10, 50)

    gbr = GradientBoostingRegressor(
        n_estimators=_n_estimators,
        learning_rate=_learning_rate,
        max_depth=_max_depth, 
        max_features=_max_features,
        min_samples_leaf=_min_samples_leaf,
        min_samples_split=_min_samp_split,
        
        random_state=RANDOM_SEED,
    )

    score = cross_val_score(
        gbr, X_train,y_train, cv=kfolds, scoring="neg_root_mean_squared_error"
    ).mean()
    return score


gbr_params = {
     'n_estimators': 1831, 'learning_rate': 0.01325036780847096, 'max_depth': 3, 'min_samples_split': 17, 'min_samples_leaf': 2, 'max_features': 29}
gbr = GradientBoostingRegressor(random_state=RANDOM_SEED, **gbr_params)
gbr.fit(X_train,y_train)
GradientBoostingRegressor(learning_rate=0.01325036780847096, max_features=29,
                          min_samples_leaf=2, min_samples_split=17,
                          n_estimators=1831, random_state=1)

3.6 XGBRegressor

def xgb_objective(trial):
    _n_estimators = trial.suggest_int("n_estimators", 50, 2000)
    _max_depth = trial.suggest_int("max_depth", 1, 20)
    _learning_rate = trial.suggest_float("learning_rate", 0.01, 1)
    _gamma = trial.suggest_float("gamma", 0.01, 1)
    _min_child_weight = trial.suggest_float("min_child_weight", 0.1, 10)
    _subsample = trial.suggest_float('subsample', 0.01, 1)
    _reg_alpha = trial.suggest_float('reg_alpha', 0.01, 10)
    _reg_lambda = trial.suggest_float('reg_lambda', 0.01, 10)

    
    xgbr = xgb.XGBRegressor(
        n_estimators=_n_estimators,
        max_depth=_max_depth, 
        learning_rate=_learning_rate,
        gamma=_gamma,
        min_child_weight=_min_child_weight,
        subsample=_subsample,
        reg_alpha=_reg_alpha,
        reg_lambda=_reg_lambda,
        random_state=RANDOM_SEED,
    )
    

    score = cross_val_score(
        xgbr, X_train,y_train, cv=kfolds, scoring="neg_root_mean_squared_error"
    ).mean()
    return score

xgb_params = {
     'n_estimators': 847, 'max_depth': 7, 'learning_rate': 0.07412279963454066, 'gamma': 0.01048697764796929, 'min_child_weight': 5.861571837417184, 'subsample': 0.7719639391828977, 'reg_alpha': 2.231609305115769, 'reg_lambda': 3.428674606766844}
xgbr = xgb.XGBRegressor(random_state=RANDOM_SEED, **xgb_params)
xgbr.fit(X_train,y_train)
XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
             colsample_bynode=1, colsample_bytree=1, gamma=0.01048697764796929,
             gpu_id=-1, importance_type='gain', interaction_constraints='',
             learning_rate=0.07412279963454066, max_delta_step=0, max_depth=7,
             min_child_weight=5.861571837417184, missing=nan,
             monotone_constraints='()', n_estimators=847, n_jobs=0,
             num_parallel_tree=1, random_state=1, reg_alpha=2.231609305115769,
             reg_lambda=3.428674606766844, scale_pos_weight=1,
             subsample=0.7719639391828977, tree_method='exact',
             validate_parameters=1, verbosity=None)

3.7 LGBMRegressor

def lgb_objective(trial):
    _num_leaves = trial.suggest_int("num_leaves", 50, 100)
    _max_depth = trial.suggest_int("max_depth", 1, 20)
    _learning_rate = trial.suggest_float("learning_rate", 0.01, 1)
    _n_estimators = trial.suggest_int("n_estimators", 50, 2000)
    _min_child_weight = trial.suggest_float("min_child_weight", 0.1, 10)
    _reg_alpha = trial.suggest_float('reg_alpha', 0.01, 10)
    _reg_lambda = trial.suggest_float('reg_lambda', 0.01, 10)
    _subsample = trial.suggest_float('subsample', 0.01, 1)


    
    lgbr = lgb.LGBMRegressor(objective='regression',
                             num_leaves=_num_leaves,
                             max_depth=_max_depth,
                             learning_rate=_learning_rate,
                             n_estimators=_n_estimators,
                             min_child_weight=_min_child_weight,
                             subsample=_subsample,
                             reg_alpha=_reg_alpha,
                             reg_lambda=_reg_lambda,
                             random_state=RANDOM_SEED,
    )
    

    score = cross_val_score(
        lgbr, X_train,y_train, cv=kfolds, scoring="neg_root_mean_squared_error"
    ).mean()
    return score

# Best score: -0.12497294451988177 
# lgb_params = tune(lgb_objective)
lgb_params = {
     'num_leaves': 81, 'max_depth': 2, 'learning_rate': 0.05943111506493225, 'n_estimators': 1668, 'min_child_weight': 4.6721695700874015, 'reg_alpha': 0.33400189583009254, 'reg_lambda': 1.4457484337302167, 'subsample': 0.42380175866399206}
lgbr = lgb.LGBMRegressor(objective='regression', random_state=RANDOM_SEED, **lgb_params)
lgbr.fit(X_train,y_train)
LGBMRegressor(learning_rate=0.05943111506493225, max_depth=2,
              min_child_weight=4.6721695700874015, n_estimators=1668,
              num_leaves=81, objective='regression', random_state=1,
              reg_alpha=0.33400189583009254, reg_lambda=1.4457484337302167,
              subsample=0.42380175866399206)

3.8 StackingRegressor

# stack models
stack = StackingRegressor(
    estimators=[
        ('ridge', ridge),
        ('lasso', lasso),
        ('gradientboostingregressor', gbr),
        ('xgb', xgbr),
        ('lgb', lgbr),
        # ('svr', svr), # Not using this for now as its score is significantly worse than the others
    ],
    cv=kfolds)
stack.fit(X_train,y_train)
StackingRegressor(cv=KFold(n_splits=10, random_state=1, shuffle=True),
                  estimators=[('ridge',
                               Ridge(alpha=19.997759851201025, random_state=1)),
                              ('lasso',
                               Lasso(alpha=0.0006224224345371836,
                                     random_state=1)),
                              ('gradientboostingregressor',
                               GradientBoostingRegressor(learning_rate=0.01325036780847096,
                                                         max_features=29,
                                                         min_samples_leaf=2,
                                                         min_samples_split=17,
                                                         n_estima...
                                            subsample=0.7719639391828977,
                                            tree_method='exact',
                                            validate_parameters=1,
                                            verbosity=None)),
                              ('lgb',
                               LGBMRegressor(learning_rate=0.05943111506493225,
                                             max_depth=2,
                                             min_child_weight=4.6721695700874015,
                                             n_estimators=1668, num_leaves=81,
                                             objective='regression',
                                             random_state=1,
                                             reg_alpha=0.33400189583009254,
                                             reg_lambda=1.4457484337302167,
                                             subsample=0.42380175866399206))])

3. 9 保存模型

def cv_rmse(model):
    rmse = -cross_val_score(model, X_train,y_train,
                            scoring="neg_root_mean_squared_error",
                            cv=kfolds)
    return (rmse)
def compare_models():
    models = {
     
        'Ridge': ridge,
        'Lasso': lasso,
        'Gradient Boosting': gbr,
        'XGBoost': xgbr,
        'LightGBM': lgbr,
        'Stacking': stack, 
        # 'SVR': svr, # TODO: Investigate why SVR got such a bad result
    }

    scores = pd.DataFrame(columns=['score', 'model'])

    for name, model in models.items():
        score = cv_rmse(model)
        print("{:s} score: {:.4f} ({:.4f})\n".format(name, score.mean(), score.std()))
        df = pd.Series(score, name='score').to_frame()
        df['model'] = name
        scores = scores.append(df)

    plt.figure(figsize=(20,10))
    sns.boxplot(data = scores, x = 'model', y = 'score')
    plt.show()
    
compare_models()
Ridge score: 0.1362 (0.0303)

Lasso score: 0.1341 (0.0294)

Gradient Boosting score: 0.1278 (0.0172)

XGBoost score: 0.1330 (0.0161)

LightGBM score: 0.1330 (0.0166)

Stacking score: 0.1289 (0.0230)

机器学习/深度学习实战——kaggle房价预测比赛实战(机器学习回归算法)_第1张图片

4. 输出预测结果

这里有一个submission.csv,是在下载数据包里面给定的sample_submission.csv,主要是获取其格式。

print('Predict submission')
submission = pd.read_csv("submission.csv")

submission.iloc[:,1] = np.expm1(stack.predict(X_test))

submission.to_csv('submission_2.csv', index=False)

我没有进行进一步的超参数微调,直接将一遍处理之后的结果提交到了比赛官网,排名从之前的20000上升到了大概4000的样子,说明对数据进行预处理之后是可以极大地提高建模的效果。同时使用传统的机器学习算法通过stacking的方法也是可以提高学习的

你可能感兴趣的:(动手学深度学习:pytorch,kaggle,房价预测,机器学习,动手学机器学习,stacking)