目录
状态机初始化
启动状态机
全局事务处理
分支事务处理
总结
个人公众号:jinjunzhu
saga模式是分布式事务中使用比较多的一种模式,他主要应用在长流程的服务,对一个全局事务,如果某个节点抛出了异常,则从这个节点往前依次回滚或补偿事务。今天我们就来看看它的源码实现。
在之前的文章《springcloud+eureka整合阿里seata-saga模式》模式中,我定义了订单服务、账户服务和库存服务,我们了解了saga模式是基于状态机来实现了,我们定义了一个状态机需要的json文件,代码如下:
{
"Name": "buyGoodsOnline",
"Comment": "buy a goods on line, add order, deduct account, deduct storage ",
"StartState": "SaveOrder",
"Version": "0.0.1",
"States": {
"SaveOrder": {
"Type": "ServiceTask",
"ServiceName": "orderSave",
"ServiceMethod": "saveOrder",
"CompensateState": "DeleteOrder",
"Next": "ChoiceAccountState",
"Input": [
"$.[businessKey]",
"$.[order]"
],
"Output": {
"SaveOrderResult": "$.#root"
},
"Status": {
"#root == true": "SU",
"#root == false": "FA",
"$Exception{java.lang.Throwable}": "UN"
}
},
"ChoiceAccountState":{
"Type": "Choice",
"Choices":[
{
"Expression":"[SaveOrderResult] == true",
"Next":"ReduceAccount"
}
],
"Default":"Fail"
},
"ReduceAccount": {
"Type": "ServiceTask",
"ServiceName": "accountService",
"ServiceMethod": "decrease",
"CompensateState": "CompensateReduceAccount",
"Next": "ChoiceStorageState",
"Input": [
"$.[businessKey]",
"$.[userId]",
"$.[money]",
{
"throwException" : "$.[mockReduceAccountFail]"
}
],
"Output": {
"ReduceAccountResult": "$.#root"
},
"Status": {
"#root == true": "SU",
"#root == false": "FA",
"$Exception{java.lang.Throwable}": "UN"
},
"Catch": [
{
"Exceptions": [
"java.lang.Throwable"
],
"Next": "CompensationTrigger"
}
]
},
"ChoiceStorageState":{
"Type": "Choice",
"Choices":[
{
"Expression":"[ReduceAccountResult] == true",
"Next":"ReduceStorage"
}
],
"Default":"Fail"
},
"ReduceStorage": {
"Type": "ServiceTask",
"ServiceName": "storageService",
"ServiceMethod": "decrease",
"CompensateState": "CompensateReduceStorage",
"Input": [
"$.[businessKey]",
"$.[productId]",
"$.[count]",
{
"throwException" : "$.[mockReduceStorageFail]"
}
],
"Output": {
"ReduceStorageResult": "$.#root"
},
"Status": {
"#root == true": "SU",
"#root == false": "FA",
"$Exception{java.lang.Throwable}": "UN"
},
"Catch": [
{
"Exceptions": [
"java.lang.Throwable"
],
"Next": "CompensationTrigger"
}
],
"Next": "Succeed"
},
"DeleteOrder": {
"Type": "ServiceTask",
"ServiceName": "orderSave",
"ServiceMethod": "deleteOrder",
"Input": [
"$.[businessKey]",
"$.[order]"
]
},
"CompensateReduceAccount": {
"Type": "ServiceTask",
"ServiceName": "accountService",
"ServiceMethod": "compensateDecrease",
"Input": [
"$.[businessKey]",
"$.[userId]",
"$.[money]"
]
},
"CompensateReduceStorage": {
"Type": "ServiceTask",
"ServiceName": "storageService",
"ServiceMethod": "compensateDecrease",
"Input": [
"$.[businessKey]",
"$.[productId]",
"$.[count]"
]
},
"CompensationTrigger": {
"Type": "CompensationTrigger",
"Next": "Fail"
},
"Succeed": {
"Type":"Succeed"
},
"Fail": {
"Type":"Fail",
"ErrorCode": "PURCHASE_FAILED",
"Message": "purchase failed"
}
}
}
这个状态机在TM控制,而在我们的代码示例中,TM在订单服务,当外部下单时,订单服务首先会创建一个订单,然后调用账户服务扣减金额,最后调用库存服务扣减库存。这个流程在上面的json文件中做了定义。
订单服务创建订单的方法会启动状态机,代码如下:
StateMachineEngine stateMachineEngine = (StateMachineEngine) ApplicationContextUtils.getApplicationContext().getBean("stateMachineEngine");
Map startParams = new HashMap<>(3);
String businessKey = String.valueOf(System.currentTimeMillis());
startParams.put("businessKey", businessKey);
startParams.put("order", order);
startParams.put("mockReduceAccountFail", "true");
startParams.put("userId", order.getUserId());
startParams.put("money", order.getPayAmount());
startParams.put("productId", order.getProductId());
startParams.put("count", order.getCount());
//sync test
StateMachineInstance inst = stateMachineEngine.startWithBusinessKey("buyGoodsOnline", null, businessKey, startParams);
可以看到,上面代码定义的buyGoodsOnline,正是json文件中name这个key的value值。
那上面创建订单代码中的stateMachineEngine这个bean是在哪里定义的呢?订单服务的demo中有一个类StateMachineConfiguration来进行定义,代码如下:
public class StateMachineConfiguration {
@Bean
public ThreadPoolExecutorFactoryBean threadExecutor(){
ThreadPoolExecutorFactoryBean threadExecutor = new ThreadPoolExecutorFactoryBean();
threadExecutor.setThreadNamePrefix("SAGA_ASYNC_EXE_");
threadExecutor.setCorePoolSize(1);
threadExecutor.setMaxPoolSize(20);
return threadExecutor;
}
@Bean
public DbStateMachineConfig dbStateMachineConfig(ThreadPoolExecutorFactoryBean threadExecutor, DataSource hikariDataSource) throws IOException {
DbStateMachineConfig dbStateMachineConfig = new DbStateMachineConfig();
dbStateMachineConfig.setDataSource(hikariDataSource);
dbStateMachineConfig.setThreadPoolExecutor((ThreadPoolExecutor) threadExecutor.getObject());
/**
*这里配置了json文件的路径,TM在初始化的时候,会把json文件解析成StateMachineImpl类,如果数据库没有保存这个状态机,则存入数据库seata_state_machine_def表
*如果数据库有记录,则取最新的一条记录,并且注册到StateMachineRepositoryImpl,注册方式有2种,一种是(stateMachineName + "_" + tenantId),一种是stateMachine.getId()
*具体代码见StateMachineRepositoryImpl类registryStateMachine方法
*这个注册的触发方法在DefaultStateMachineConfig的初始化方法init()
*/
dbStateMachineConfig.setResources(new PathMatchingResourcePatternResolver().getResources("classpath*:statelang/*.json"));//json文件
dbStateMachineConfig.setEnableAsync(true);
dbStateMachineConfig.setApplicationId("order-server");
dbStateMachineConfig.setTxServiceGroup("my_test_tx_group");
return dbStateMachineConfig;
}
@Bean
public ProcessCtrlStateMachineEngine stateMachineEngine(DbStateMachineConfig dbStateMachineConfig){
ProcessCtrlStateMachineEngine stateMachineEngine = new ProcessCtrlStateMachineEngine();
stateMachineEngine.setStateMachineConfig(dbStateMachineConfig);
return stateMachineEngine;
}
@Bean
public StateMachineEngineHolder stateMachineEngineHolder(ProcessCtrlStateMachineEngine stateMachineEngine){
StateMachineEngineHolder stateMachineEngineHolder = new StateMachineEngineHolder();
stateMachineEngineHolder.setStateMachineEngine(stateMachineEngine);
return stateMachineEngineHolder;
}
}
可以看到,我们在DbStateMachineConfig中配置了状态机的json文件,同时配置了applicationId和txServiceGroup。在DbStateMachineConfig初始化的时候,子类DefaultStateMachineConfig的init的方法会把json文件解析成状态机,并注册。
附:我提供的demo解析后的状态机类StateMachineImpl的参数记录了我们在json里面定义的状态机流程,内容 如下:
id = null
tenantId = null
appName = "SEATA"
name = "buyGoodsOnline"
comment = "buy a goods on line, add order, deduct account, deduct storage "
version = "0.0.1"
startState = "SaveOrder"
status = {StateMachine$Status@9135} "AC"
recoverStrategy = null
isPersist = true
type = "STATE_LANG"
content = null
gmtCreate = null
states = {LinkedHashMap@9137} size = 11
"SaveOrder" -> {ServiceTaskStateImpl@9153}
"ChoiceAccountState" -> {ChoiceStateImpl@9155}
"ReduceAccount" -> {ServiceTaskStateImpl@9157}
"ChoiceStorageState" -> {ChoiceStateImpl@9159}
"ReduceStorage" -> {ServiceTaskStateImpl@9161}
"DeleteOrder" -> {ServiceTaskStateImpl@9163}
"CompensateReduceAccount" -> {ServiceTaskStateImpl@9165}
"CompensateReduceStorage" -> {ServiceTaskStateImpl@9167}
"CompensationTrigger" -> {CompensationTriggerStateImpl@9169}
"Succeed" -> {SucceedEndStateImpl@9171}
"Fail" -> {FailEndStateImpl@9173}
在上面的创建订单的代码中,startWithBusinessKey方法进行了整个事务的启动,这个方法还有一个异步模式startWithBusinessKeyAsync,这里我们以同步模式来讲解,源代码如下:
public StateMachineInstance startWithBusinessKey(String stateMachineName, String tenantId, String businessKey,
Map startParams) throws EngineExecutionException {
return startInternal(stateMachineName, tenantId, businessKey, startParams, false, null);
}
private StateMachineInstance startInternal(String stateMachineName, String tenantId, String businessKey,
Map startParams, boolean async, AsyncCallback callback)
throws EngineExecutionException {
//省略部分源代码
//创建一个状态机实例
StateMachineInstance instance = createMachineInstance(stateMachineName, tenantId, businessKey, startParams);//tenantId="000001",默认值
ProcessContextBuilder contextBuilder = ProcessContextBuilder.create().withProcessType(ProcessType.STATE_LANG)
.withOperationName(DomainConstants.OPERATION_NAME_START).withAsyncCallback(callback).withInstruction(
new StateInstruction(stateMachineName, tenantId)).withStateMachineInstance(instance)
.withStateMachineConfig(getStateMachineConfig()).withStateMachineEngine(this);
Map contextVariables;
if (startParams != null) {
contextVariables = new ConcurrentHashMap<>(startParams.size());
nullSafeCopy(startParams, contextVariables);
} else {
contextVariables = new ConcurrentHashMap<>();
}
instance.setContext(contextVariables);//把启动参数赋值给状态机实例的context
//给ProcessContextImpl的variables加参数
contextBuilder.withStateMachineContextVariables(contextVariables);
contextBuilder.withIsAsyncExecution(async);
ProcessContext processContext = contextBuilder.build();//创建一个ProcessContextImpl
if (instance.getStateMachine().isPersist() && stateMachineConfig.getStateLogStore() != null) {//这个条件是true
stateMachineConfig.getStateLogStore().recordStateMachineStarted(instance, processContext);//记录状态机开始状态
}
if (StringUtils.isEmpty(instance.getId())) {
instance.setId(
stateMachineConfig.getSeqGenerator().generate(DomainConstants.SEQ_ENTITY_STATE_MACHINE_INST));
}
if (async) {
stateMachineConfig.getAsyncProcessCtrlEventPublisher().publish(processContext);
} else {
//发送消息到EventBus,这里的消费者是ProcessCtrlEventConsumer,在DefaultStateMachineConfig初始化时设置
stateMachineConfig.getProcessCtrlEventPublisher().publish(processContext);
}
return instance;
}
上面的代码中我们可以看出,启动状态记得时候主要做了2件事情,一个是记录状态机开始的状态,一个是发送消息到EventBus,下面我们详细看一下这2个过程。
上面的代码分析中,有一个记录状态机开始状态的代码,如下:
stateMachineConfig.getStateLogStore().recordStateMachineStarted(instance, processContext);
这里调用了类DbAndReportTcStateLogStore的recordStateMachineStarted方法,代码如下:
public void recordStateMachineStarted(StateMachineInstance machineInstance, ProcessContext context) {
if (machineInstance != null) {
//if parentId is not null, machineInstance is a SubStateMachine, do not start a new global transaction,
//use parent transaction instead.
String parentId = machineInstance.getParentId();
if (StringUtils.hasLength(parentId)) {
if (StringUtils.isEmpty(machineInstance.getId())) {
machineInstance.setId(parentId);
}
} else {//走这个分支
/**
*这里的beginTransaction就是开启全局事务,这里跟之前
*《阿里中间件seata源码剖析五:聊聊seata中全局事务的开启》
*讲的开启全局事务是一样的,都是调用TC开启全局事务,感兴趣的可以看这篇文章
*/
beginTransaction(machineInstance, context);
}
if (StringUtils.isEmpty(machineInstance.getId()) && seqGenerator != null) {
machineInstance.setId(seqGenerator.generate(DomainConstants.SEQ_ENTITY_STATE_MACHINE_INST));
}
// save to db
machineInstance.setSerializedStartParams(paramsSerializer.serialize(machineInstance.getStartParams()));
executeUpdate(stateLogStoreSqls.getRecordStateMachineStartedSql(dbType),
STATE_MACHINE_INSTANCE_TO_STATEMENT_FOR_INSERT, machineInstance);
}
}
上面executeUpdate方法在子类AbstractStore,代码如下:
protected int executeUpdate(String sql, ObjectToStatement objectToStatement, T o) {
Connection connection = null;
PreparedStatement stmt = null;
try {
connection = dataSource.getConnection();
if (LOGGER.isDebugEnabled()) {
LOGGER.debug("Preparing SQL: {}", sql);
}
stmt = connection.prepareStatement(sql);
if (LOGGER.isDebugEnabled()) {
LOGGER.debug("setting params to PreparedStatement: {}", BeanUtils.beanToString(o));
}
objectToStatement.toStatement(o, stmt);
int count = stmt.executeUpdate();
if (!connection.getAutoCommit()) {
connection.commit();
}
return count;
} catch (SQLException e) {
throw new StoreException(e);
} finally {
closeSilent(stmt);
closeSilent(connection);
}
}
debug一下这个代码,这里执行的sql如下:
INSERT INTO seata_state_machine_inst
(id, machine_id, tenant_id, parent_id, gmt_started, business_key, start_params, is_running, status, gmt_updated)
VALUES ('192.168.59.146:8091:65853497147990016', '06a098cab53241ca7ed09433342e9f07', '000001', null, '2020-10-31 17:18:24.773', '1604135904773', '{"@type":"java.util.HashMap","money":50.,"productId":1L,"_business_key_":"1604135904773","businessKey":"1604135904773","count":1,"mockReduceAccountFail":"true","userId":1L,"order":{"@type":"io.seata.sample.entity.Order","count":1,"payAmount":50,"productId":1,"userId":1}}', 1, 'RU', '2020-10-31 17:18:24.773')
可以看到,这个全局事务记录在了表seata_state_machine_inst,记录的是我们启动状态机的参数,记录的状态是"RU"也就是RUNNING。
上一节我们提到,启动状态机后,向EventBus发了一条消息,这个消息的消费者是ProcessCtrlEventConsumer,我们看一下这个类的代码:
public class ProcessCtrlEventConsumer implements EventConsumer {
private ProcessController processController;
@Override
public void process(ProcessContext event) throws FrameworkException {
//这里的processController是ProcessControllerImpl
processController.process(event);
}
@Override
public boolean accept(Class clazz) {
return ProcessContext.class.isAssignableFrom(clazz);
}
public void setProcessController(ProcessController processController) {
this.processController = processController;
}
}
ProcessControllerImpl类的process方法代码如下:
public void process(ProcessContext context) throws FrameworkException {
try {
businessProcessor.process(context);
businessProcessor.route(context);
} catch (FrameworkException fex) {
throw fex;
} catch (Exception ex) {
LOGGER.error("Unknown exception occurred, context = {}", context, ex);
throw new FrameworkException(ex, "Unknown exception occurred", FrameworkErrorCode.UnknownAppError);
}
}
这里的处理逻辑有些复杂,先上一张UML类图:
我们看一下StateMachineProcessHandler类中process方法,代码如下:
public void process(ProcessContext context) throws FrameworkException {
StateInstruction instruction = context.getInstruction(StateInstruction.class);
State state = instruction.getState(context);
String stateType = state.getType();
StateHandler stateHandler = stateHandlers.get(stateType);
List interceptors = null;
if (stateHandler instanceof InterceptableStateHandler) {
interceptors = ((InterceptableStateHandler)stateHandler).getInterceptors();
}
List executedInterceptors = null;
Exception exception = null;
try {
if (interceptors != null && interceptors.size() > 0) {
executedInterceptors = new ArrayList<>(interceptors.size());
for (StateHandlerInterceptor interceptor : interceptors) {
executedInterceptors.add(interceptor);
interceptor.preProcess(context);
}
}
stateHandler.process(context);
} catch (Exception e) {
exception = e;
throw e;
} finally {
if (executedInterceptors != null && executedInterceptors.size() > 0) {
for (int i = executedInterceptors.size() - 1; i >= 0; i--) {
StateHandlerInterceptor interceptor = executedInterceptors.get(i);
interceptor.postProcess(context, exception);
}
}
}
}
这个方法使用了代理模式。我们看到了StateHandlerInterceptor,stateHandler.process方式的前后分别调用了interceptor的preProcess和postProcess。
我们先来看一下代理,这里是ServiceTaskHandlerInterceptor,代码如下:
public class ServiceTaskHandlerInterceptor implements StateHandlerInterceptor {
//省略部分代码
@Override
public void preProcess(ProcessContext context) throws EngineExecutionException {
StateInstruction instruction = context.getInstruction(StateInstruction.class);
StateMachineInstance stateMachineInstance = (StateMachineInstance)context.getVariable(
DomainConstants.VAR_NAME_STATEMACHINE_INST);
StateMachineConfig stateMachineConfig = (StateMachineConfig)context.getVariable(
DomainConstants.VAR_NAME_STATEMACHINE_CONFIG);
if (EngineUtils.isTimeout(stateMachineInstance.getGmtUpdated(), stateMachineConfig.getTransOperationTimeout())) {
String message = "Saga Transaction [stateMachineInstanceId:" + stateMachineInstance.getId()
+ "] has timed out, stop execution now.";
EngineUtils.failStateMachine(context, exception);//修改状态机状态FA
throw exception;
}
StateInstanceImpl stateInstance = new StateInstanceImpl();
Map contextVariables = (Map)context.getVariable(
DomainConstants.VAR_NAME_STATEMACHINE_CONTEXT);
ServiceTaskStateImpl state = (ServiceTaskStateImpl)instruction.getState(context);
List
从这个代码我们能看到,分支事务执行前,封装了一个StateInstanceImpl赋值给了ProcessContext,分支事务执行后,对这个StateInstanceImpl进行了修改,这个StateInstanceImpl有3个作用:
1.传入StateMachineInstanceImpl的stateMap用于重试或交易补偿
2.记录了分支事务的执行情况,同时支持持久化到seata_state_inst表
3.传入TaskStateRouter用作判断全局事务结束
看完了代理中的增强逻辑,我们看一下被代理的方法stateHandler.process(context),这个stateHandler的实现类比较多,我们以ServiceTaskStateHandler为例来讲解,代码如下:
public void process(ProcessContext context) throws EngineExecutionException {
StateInstruction instruction = context.getInstruction(StateInstruction.class);
ServiceTaskStateImpl state = (ServiceTaskStateImpl) instruction.getState(context);
StateInstance stateInstance = (StateInstance) context.getVariable(DomainConstants.VAR_NAME_STATE_INST);
Object result;
try {
List
这段代码触发了我们定义的ServiceTaskState,调用了我们定义的next或者compensate。
下面我们再看一下CustomizeBusinessProcessor的route方法,代码如下:
public void route(ProcessContext context) throws FrameworkException {
//code = "STATE_LANG"
//message = "SEATA State Language"
//name = "STATE_LANG"
//ordinal = 0
ProcessType processType = matchProcessType(context);
RouterHandler router = routerHandlers.get(processType.getCode());
router.route(context);//DefaultRouterHandler的route方法
}
看一下DefaultRouterHandler的route方法,代码如下:
public void route(ProcessContext context) throws FrameworkException {
try {
ProcessType processType = matchProcessType(context);
ProcessRouter processRouter = processRouters.get(processType.getCode());//StateMachineProcessRouter
Instruction instruction = processRouter.route(context);
if (instruction == null) {
LOGGER.info("route instruction is null, process end");
} else {
context.setInstruction(instruction);
eventPublisher.publish(context);
}
} catch (FrameworkException e) {
throw e;
} catch (Exception ex) {
throw new FrameworkException(ex, ex.getMessage(), FrameworkErrorCode.UnknownAppError);
}
}
看一下StateMachineProcessRouter的route方法,这里也是用了代理模式,代码如下:
public Instruction route(ProcessContext context) throws FrameworkException {
StateInstruction stateInstruction = context.getInstruction(StateInstruction.class);
State state;
if (stateInstruction.getTemporaryState() != null) {
state = stateInstruction.getTemporaryState();
stateInstruction.setTemporaryState(null);
} else {//走这个分支
StateMachineConfig stateMachineConfig = (StateMachineConfig)context.getVariable(
DomainConstants.VAR_NAME_STATEMACHINE_CONFIG);
StateMachine stateMachine = stateMachineConfig.getStateMachineRepository().getStateMachine(
stateInstruction.getStateMachineName(), stateInstruction.getTenantId());
state = stateMachine.getStates().get(stateInstruction.getStateName());
}
String stateType = state.getType();
StateRouter router = stateRouters.get(stateType);
Instruction instruction = null;
List interceptors = null;
if (router instanceof InterceptableStateRouter) {//这里只有EndStateRouter
interceptors = ((InterceptableStateRouter)router).getInterceptors();//EndStateRouterInterceptor
}
List executedInterceptors = null;
Exception exception = null;
try {
//前置增量实现方法是空,这里省略代码
instruction = router.route(context, state);
} catch (Exception e) {
exception = e;
throw e;
} finally {
if (executedInterceptors != null && executedInterceptors.size() > 0) {
for (int i = executedInterceptors.size() - 1; i >= 0; i--) {
StateRouterInterceptor interceptor = executedInterceptors.get(i);
interceptor.postRoute(context, state, instruction, exception);//结束状态机
}
}
//if 'Succeed' or 'Fail' State did not configured, we must end the state machine
if (instruction == null && !stateInstruction.isEnd()) {
EngineUtils.endStateMachine(context);
}
}
return instruction;
}
这里的代理只实现了一个后置增强,做的事情就是结束状态机。
StateRouter的UML类图如下:
可以看到,除了EndStateRouter,只有一个TaskStateRouter了。而EndStateRouter并没有做什么事情,因为关闭状态机的逻辑已经由代理做了。这里我们看一下TaskStateRouter,代码如下:
public Instruction route(ProcessContext context, State state) throws EngineExecutionException {
StateInstruction stateInstruction = context.getInstruction(StateInstruction.class);
if (stateInstruction.isEnd()) {//如果已经结束,直接返回
//省略代码
}
//The current CompensationTriggerState can mark the compensation process is started and perform compensation
// route processing.
State compensationTriggerState = (State)context.getVariable(
DomainConstants.VAR_NAME_CURRENT_COMPEN_TRIGGER_STATE);
if (compensationTriggerState != null) {
return compensateRoute(context, compensationTriggerState);//加入补偿集合进行补偿
}
//There is an exception route, indicating that an exception is thrown, and the exception route is prioritized.
String next = (String)context.getVariable(DomainConstants.VAR_NAME_CURRENT_EXCEPTION_ROUTE);
if (StringUtils.hasLength(next)) {
context.removeVariable(DomainConstants.VAR_NAME_CURRENT_EXCEPTION_ROUTE);
} else {
next = state.getNext();
}
//If next is empty, the state selected by the Choice state was taken.
if (!StringUtils.hasLength(next) && context.hasVariable(DomainConstants.VAR_NAME_CURRENT_CHOICE)) {
next = (String)context.getVariable(DomainConstants.VAR_NAME_CURRENT_CHOICE);
context.removeVariable(DomainConstants.VAR_NAME_CURRENT_CHOICE);
}
if (!StringUtils.hasLength(next)) {
return null;
}
StateMachine stateMachine = state.getStateMachine();
State nextState = stateMachine.getState(next);
if (nextState == null) {
throw new EngineExecutionException("Next state[" + next + "] is not exits",
FrameworkErrorCode.ObjectNotExists);
}
stateInstruction.setStateName(next);//获取到下一个要流转的状态并且赋值给stateInstruction
return stateInstruction;
}
到这里,我们就分析完成了状态机的原理,ProcessControllerImpl类中,调用CustomizeBusinessProcessor的process处理一个状态,然后调用route方法获取到下一个节点进行处理。
需要注意的是,这里获取到下一个节点后,并没有直接处理,而是使用观察者模式,先发送到EventBus,等待观察者来处理,循环往复,直到EndStateRouter结束状态机。
这里还要注意,这里观察者模式的Event是ProcessContext,里面包含了Instruction,而Instruction里面包含了State,这个State里面就决定了下一个处理的节点直到结束。UML类图如下:
seata中间件中的saga模式使用比较广泛,但是代码还是比较复杂的。我从下面几个方面进行了梳理:
1.我们定义的json文件加载到了类StateMachineImpl中。
2.启动状态机,我们也就启动了全局事务,这个普通模式启动全局事务是一样的,都会向TC发送消息。
3.处理状态机状态和控制状态流转的入口类在ProcessControllerImpl,从process方法可以跟代码。
4.saga模式额外引入了3张表,我们也可以根据跟全局事务和分支事务相关的2张表来跟踪代码,我之前给出的demo,如果事务成功,这2张表的写sql按照状态机执行顺序给出一个成功sql,代码如下:
INSERT INTO seata_state_machine_inst
(id, machine_id, tenant_id, parent_id, gmt_started, business_key, start_params, is_running, status, gmt_updated)
VALUES ('192.168.59.146:8091:65853497147990016', '06a098cab53241ca7ed09433342e9f07', '000001', null, '2020-10-31 17:18:24.773', '1604135904773', '{"@type":"java.util.HashMap","money":50.,"productId":1L,"_business_key_":"1604135904773","businessKey":"1604135904773","count":1,"mockReduceAccountFail":"true","userId":1L,"order":{"@type":"io.seata.sample.entity.Order","count":1,"payAmount":50,"productId":1,"userId":1}}', 1, 'RU', '2020-10-31 17:18:24.773')
INSERT INTO seata_state_inst (id, machine_inst_id, name, type, gmt_started, service_name, service_method, service_type, is_for_update, input_params, status, business_key, state_id_compensated_for, state_id_retried_for)
VALUES ('4fe5f602452c84ba5e88fd2ee9c13b35', '192.168.59.146:8091:65853497147990016', 'SaveOrder', 'ServiceTask', '2020-10-31 17:18:40.84', 'orderSave', 'saveOrder', null, 1, '["1604135904773",{"@type":"io.seata.sample.entity.Order","count":1,"payAmount":50,"productId":1,"userId":1}]', 'RU', null, null, null)
UPDATE seata_state_inst SET gmt_end = '2020-10-31 17:18:49.919', excep = null, status = 'SU', output_params = 'true' WHERE id = '4fe5f602452c84ba5e88fd2ee9c13b35' AND machine_inst_id = '192.168.59.146:8091:65853497147990016'
INSERT INTO seata_state_inst (id, machine_inst_id, name, type, gmt_started, service_name, service_method, service_type, is_for_update, input_params, status, business_key, state_id_compensated_for, state_id_retried_for)
VALUES ('8371235cb2c66c8626e148f66123d3b4', '192.168.59.146:8091:65853497147990016', 'ReduceAccount', 'ServiceTask', '2020-10-31 17:19:00.441', 'accountService', 'decrease', null, 1, '["1604135904773",1L,50.,{"@type":"java.util.LinkedHashMap","throwException":"true"}]', 'RU', null, null, null)
UPDATE seata_state_inst SET gmt_end = '2020-10-31 17:19:09.593', excep = null, status = 'SU', output_params = 'true' WHERE id = '8371235cb2c66c8626e148f66123d3b4' AND machine_inst_id = '192.168.59.146:8091:65853497147990016'
INSERT INTO seata_state_inst (id, machine_inst_id, name, type, gmt_started, service_name, service_method, service_type, is_for_update, input_params, status, business_key, state_id_compensated_for, state_id_retried_for)
VALUES ('e70a49f1eac72f929085f4e82c2b4de2', '192.168.59.146:8091:65853497147990016', 'ReduceStorage', 'ServiceTask', '2020-10-31 17:19:18.494', 'storageService', 'decrease', null, 1, '["1604135904773",1L,1,{"@type":"java.util.LinkedHashMap"}]', 'RU', null, null, null)
UPDATE seata_state_inst SET gmt_end = '2020-10-31 17:19:26.613', excep = null, status = 'SU', output_params = 'true' WHERE id = 'e70a49f1eac72f929085f4e82c2b4de2' AND machine_inst_id = '192.168.59.146:8091:65853497147990016'
UPDATE seata_state_machine_inst SET gmt_end = '2020-10-31 17:19:33.581', excep = null, end_params = '{"@type":"java.util.HashMap","productId":1L,"count":1,"ReduceAccountResult":true,"mockReduceAccountFail":"true","userId":1L,"money":50.,"SaveOrderResult":true,"_business_key_":"1604135904773","businessKey":"1604135904773","ReduceStorageResult":true,"order":{"@type":"io.seata.sample.entity.Order","count":1,"id":60,"payAmount":50,"productId":1,"userId":1}}',status = 'SU', compensation_status = null, is_running = 0, gmt_updated = '2020-10-31 17:19:33.582' WHERE id = '192.168.59.146:8091:65853497147990016' and gmt_updated = '2020-10-31 17:18:24.773'
由于能力和精力有限,可能有一些理解上的错误,欢迎大佬们批评指正。
seata专栏回顾:
《springcloud+eureka整合阿里seata-xa模式》
《阿里中间件seata源码剖析六:TCC模式中2阶段提交实现》
《阿里中间件seata源码剖析五:聊聊seata中全局事务的开启》
《springcloud+eureka整合阿里seata-saga模式》
《阿里中间件seata源码剖析四:AT模式中undolog实现》
《阿里中间件seata源码剖析三:聊聊seata中的ShutdownHook》
《阿里中间件seata源码剖析二:聊聊TC的初始化》
《阿里中间件seata源码剖析一:聊聊RM和TM客户端初始化》
《springcloud+eureka整合seata-tcc模式》
《springboot多数据源整合seata-AT模式》
《springcloud+eureka整合seata-AT模式》
欢迎关注个人公众号