resnet就是在前面几个卷积网络的基础上的延续,基本思想还是卷积堆叠。
之前学弟BN(批量归一化)可以解决网络层数太深而出现的梯度消失问题,但是如果网络层数太多,这个方法也是不太管用的。所以就提出了resnet。
resnet的主要特点就是残差块,残差块的目的就是为了保存之前当前层未训练之前的参数的特征,将这些参数和训练之后的数据一同传入到之后的层当中。
残差块具体解释如下:
黑色图中F(x)可以理解为进行中间的一系列卷积、relu、BN等操作之后的输出,我们最后把F(x)和x相加作为本层残差块的输出,这样既保留了上一层的一部分特征,也进行了卷积训练,有效避免了较深层网络梯度消失的问题。
将多个残差块堆叠之后形成一个resnet网络:
虽然 ResNet 的主体结构跟 GoogLeNet类似,但 ResNet 结构更简单,修改也更方便。这些因素都导致了 ResNet 迅速被广泛使用。
这是resnet18详细的结构图:
李沐的代码:
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
class Residual(nn.Module): #@save
def __init__(self, input_channels, num_channels,
use_1x1conv=False, strides=1):
super().__init__()
self.conv1 = nn.Conv2d(input_channels, num_channels,
kernel_size=3, padding=1, stride=strides)
self.conv2 = nn.Conv2d(num_channels, num_channels,
kernel_size=3, padding=1)
if use_1x1conv:
self.conv3 = nn.Conv2d(input_channels, num_channels,
kernel_size=1, stride=strides)
else:
self.conv3 = None
self.bn1 = nn.BatchNorm2d(num_channels)
self.bn2 = nn.BatchNorm2d(num_channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, X):
Y = F.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:
X = self.conv3(X)
Y += X
return F.relu(Y)
'''resnet前面几层'''
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2d(64), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
def resnet_block(input_channels, num_channels, num_residuals,
first_block=False):
blk = []
for i in range(num_residuals):
if i == 0 and not first_block:
blk.append(Residual(input_channels, num_channels,
use_1x1conv=True, strides=2))
else:
blk.append(Residual(num_channels, num_channels))
return blk
b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))
net = nn.Sequential(b1, b2, b3, b4, b5,
nn.AdaptiveAvgPool2d((1,1)),
nn.Flatten(), nn.Linear(512, 10))
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape:\t', X.shape)
lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
residual对应的是:
resnet_block对应的是这样的:
这四行代码就对应图中4个颜色
b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))
参考:
ResNet详解——通俗易懂版_sunny_yeah_的博客-CSDN博客_resnet
ResNet结构解析及pytorch代码 - 知乎
resnet18 50网络结构以及pytorch实现代码 - 简书