Python性能调优的十个小技巧总结

1 多多使用列表生成式

替换下面代码:

cube_numbers = []
  for n in range(0,10):
    if n % 2 == 1:
      cube_numbers.append(n**3)

为列表生成式写法:

cube_numbers = [n**3 for n in range(1,10) if n%2 == 1]

2 内置函数

尽可能多使用下面这些内置函数:

Python性能调优的十个小技巧总结_第1张图片

3 尽可能使用生成器

单机处理较大数据量时,生成器往往很有用,因为它是分小片逐次读取,最大程度节省内存,如下网页爬取时使用yield

import requests
import re

def get_pages(link):
  pages_to_visit = []
  pages_to_visit.append(link)
  pattern = re.compile('https?')
  while pages_to_visit:
    current_page = pages_to_visit.pop(0)
    page = requests.get(current_page)
    for url in re.findall('', str(page.content)):
      if url[0] == '/':
        url = current_page + url[1:]
      if pattern.match(url):
        pages_to_visit.append(url)
    # yield
    yield current_page
webpage = get_pages('http://www.example.com')
for result in webpage:
  print(result)

4 判断成员所属关系最快的方法使用 in

for name in member_list:
  print('{} is a member'.format(name))

5 使用集合求交集

替换下面代码:

a = [1,2,3,4,5]
b = [2,3,4,5,6]

overlaps = []
for x in a:
  for y in b:
    if x==y:
      overlaps.append(x)

print(overlaps)

修改为set和求交集:

a = [1,2,3,4,5]
b = [2,3,4,5,6]

overlaps = set(a) & set(b)

print(overlaps)

6 多重赋值

Python支持多重赋值的风格,要多多使用

first_name, last_name, city = "Kevin", "Cunningham", "Brighton"

7 尽量少用全局变量

Python查找最快、效率最高的是局部变量,查找全局变量相对变慢很多,因此多用局部变量,少用全局变量。

8 高效的itertools模块

itertools模块支持多个迭代器的操作,提供最节省内存的写法,因此要多多使用,如下求三个元素的全排列:

import itertools
iter = itertools.permutations(["Alice", "Bob", "Carol"])
list(iter)

9 lru_cache 缓存

位于functools模块的lru_cache装饰器提供了缓存功能,如下结合它和递归求解斐波那契数列第n:

import functools

@functools.lru_cache(maxsize=128)
def fibonacci(n):
  if n == 0:
    return 0
  elif n == 1:
    return 1
  return fibonacci(n - 1) + fibonacci(n-2)

因此,下面的递归写法非常低效,存在重复求解多个子问题的情况:

def fibonacci(n):
  if n == 0: # There is no 0'th number
    return 0
  elif n == 1: # We define the first number as 1
    return 1
  return fibonacci(n - 1) + fibonacci(n-2)

10 内置函数、key和itemgetter

上面提到尽量多使用内置函数,如下对列表排序使用keyoperator.itemgetter

import operator
my_list = [("Josh", "Grobin", "Singer"), ("Marco", "Polo", "General"), ("Ada", "Lovelace", "Scientist")]
my_list.sort(key=operator.itemgetter(0))
my_list

技术交流

欢迎转载、收藏、有所收获点赞支持一下!

Python性能调优的十个小技巧总结_第2张图片

到此这篇关于Python性能调优的十个小技巧总结的文章就介绍到这了,更多相关Python 性能调优内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

你可能感兴趣的:(Python性能调优的十个小技巧总结)