- BERT-NER-Pytorch 深度学习教程
富茉钰Ida
BERT-NER-Pytorch深度学习教程BERT-NER-PytorchChineseNER(NamedEntityRecognition)usingBERT(Softmax,CRF,Span)项目地址:https://gitcode.com/gh_mirrors/be/BERT-NER-Pytorch1.项目介绍BERT-NER-Pytorch是一个基于PyTorch实现的中文命名实体识别(
- 【深度学习】条件随机场(CRF)深度解析:原理、应用与前沿
白熊188
深度学习深度学习人工智能
条件随机场(CRF)深度解析:原理、应用与前沿一、算法背景知识1.1序列标注的挑战1.2概率图模型演进二、算法理论与结构2.1基本定义2.2特征函数设计状态特征(节点特征)转移特征(边特征)2.3线性链CRF结构2.4训练与解码2.5前向-后向算法三、模型评估3.1评估指标3.2评估方法对比3.3性能基准(CoNLL-2003NER)四、应用案例4.1自然语言处理4.2生物信息学4.3计算机视觉五
- 使用 Python 构建知识图谱(教程含源码)
知识大胖
NVIDIAGPU和大语言模型开发教程Python源码大全python知识图谱开发语言
介绍这篇文章概述了使用Python构建知识图谱的全面方法,重点介绍文本分析技术,例如命名实体识别(NER)、句法分析和关系提取。它详细介绍了清理和预处理文本、识别关键实体及其关系以及将数据可视化为结构化图的过程。该方法利用Spacy等库进行NER和大型语言模型(LLM)进行关系提取。该文档还提供了用于实现这些技术的代码片段和示例,强调了事件检测和共现分析在生成富有洞察力的知识图谱方面的重要性。最后
- 规范化信息抽取:原理流程与Python实战
闲人编程
pythonNLPNEREE信息抽取pythonRE模型角色联合
目录怎样规范化实现信息抽取:原理、流程与Python实战一、引言二、信息抽取系统架构与流程2.1总体架构2.2主要组件三、核心算法与模型原理3.1命名实体识别(NER)3.1.1序列标注模型(BiLSTM-CRF)3.2关系抽取(RE)3.2.1基于依存路径的卷积网络(DepCNN)3.3事件抽取(EE)四、规范化流程可视化五、端到端Python实现示例5.1环境依赖5.2文本预处理模块5.3NE
- 自然语言处理之命名实体识别:Flair:Flair框架概览与安装
zhubeibei168
自然语言处理自然语言处理人工智能中文分词bert
自然语言处理之命名实体识别:Flair:Flair框架概览与安装自然语言处理之命名实体识别:Flair框架概览与安装Flair框架的起源与目标Flair,一个开源的自然语言处理(NLP)框架,由荷兰的InstituteforLanguage,LogicandInformation(ILLI)开发。其目标是提供一个易于使用、高度可扩展的平台,用于执行各种NLP任务,包括命名实体识别(NER)、情感分
- 【大模型:知识图谱】--命名实体识别(NER)详解
西柚小萌新吖(●ˇ∀ˇ●)
大模型知识图谱人工智能
在解了知识图谱的全貌之后,我们现在慢慢的开始深入的学习知识图谱的每个步骤。今天介绍知识图谱里面的NER的环节。命名实体识别(NamedEntityRecognition,简称NER),是指识别文本中具有特定意义的实体,主要包括人名、地名、机构名、专有名词等。通常包括两部分:(1)实体边界识别;(2)确定实体类别(人名、地名、机构名或其他)。目录1.NER--中文问题2.NER--方法总结2.1基于
- BERT-BILSTM-GCN-CRF-for-NER: NER任务中的融合创新
傅阳轩
BERT-BILSTM-GCN-CRF-for-NER:NER任务中的融合创新【下载地址】BERT-BILSTM-GCN-CRF-for-NERNER任务中的融合创新BERT-BILSTM-GCN-CRF-for-NER是一款专注于命名实体识别(NER)任务的创新模型,结合了BERT、双向长短期记忆网络(BILSTM)、图卷积网络(GCN)和条件随机场(CRF)的优势。该模型通过引入GCN捕捉实体
- MATLAB 自然语言处理入门教程
tyatyatya
MATLAB教程MATLAB下载安装教程matlab自然语言处理开发语言
文章目录前言环境配置一、MATLABNLP工具箱概述二、核心功能与API1.文本数据准备2.特征提取3.文本分类(传统机器学习)4.深度学习文本分类(LSTM)三、实战案例:情感分析四、高级应用1.命名实体识别(NER)2.主题模型(LDA)前言以下是MATLAB自然语言处理(NLP)的入门教程,涵盖基础概念、核心功能。环境配置MATLAB下载安装教程:https://blog.csdn.net/
- 中文小样本NER模型方法总结和实战
程序员.小富
知识图谱人工智能知识图谱
一、简介在UIE出来以前,小样本NER主要针对的是英文数据集,目前主流的小样本NER方法大多是基于prompt,在英文上效果好的方法,在中文上不一定适用,其主要原因可能是:中文长实体相对英文较多,英文是按word进行切割,很多实体就是一个词;边界相对来说更清晰;生成方法对于长实体来说更加困难。但是随着UIE的出现,中文小样本NER的效果得到了突破。二、主流小样本NER方法2.1、EntLMEntL
- 提取微博文本中的具体地名有哪些方法
DarthP
深度学习人工智能
提取微博文本中的具体地名有以下几种方法:基于正则表达式:对微博文本进行正则匹配,提取出文本中符合某种特定格式的地名。基于词典匹配:使用一个预先编制的词典,在微博文本中查找是否有在词典中出现过的地名。基于命名实体识别(NER):利用自然语言处理技术中的命名实体识别方法,对微博文本进行语言分析,从中提取出地名。基于地理信息抽取:利用地理信息处理技术,从微博文本中提取出经纬度信息或地理位置信息,然后根据
- 当前人工智能领域的主流高级技术及其核心方向
小赖同学啊
人工智能人工智能
以下是当前人工智能领域的主流高级技术及其核心方向,涵盖理论突破与产业应用:一、基础架构创新Transformer架构突破点:通过自注意力机制(Self-Attention)实现长距离依赖建模,颠覆传统RNN/CNN架构。代表模型:BERT(NLP理解)、GPT(生成式对话)、ViT(视觉Transformer)。应用场景:机器翻译、文本生成、蛋白质结构预测(AlphaFold)。神经辐射场(NeR
- 医学实体识别(NER)训练流程/医学关系识别(RE)训练流程
AI Agent首席体验官
python3.11人工智能
知识图谱知识抽取的主流流程数据获取与预处理(DataAcquisitionandPreprocessing)网络爬虫采集数据(Webcrawling)数据清洗(Datacleaning)文本分词与标准化(Texttokenizationandnormalization)实体识别(NamedEntityRecognition,NER)识别文本中的命名实体(Identifyingnamedentiti
- 自然语言处理之命名实体识别:Bi-LSTM-CRF在信息抽取中的实战革命
Loving_enjoy
计算机学科论文创新点自然语言处理
**从海量文本中精准捕捉关键信息,是AI时代企业的核心竞争力**在医疗报告中快速定位疾病与药物、从法律文书中提取关键条款、在新闻中实时追踪热点事件——这些场景的背后,都离不开**命名实体识别(NER)**技术的支撑。而作为NER领域的“黄金搭档”,**Bi-LSTM-CRF模型**凭借其独特的序列建模能力,正在推动信息抽取技术进入工业级应用时代。本文将深入解析该模型在信息抽取中的实战价值,并揭示其
- 利用Python进行自然语言处理——从基础到高级应用
egzosn
python自然语言处理easyui开发语言人工智能
本文将详细介绍如何使用Python进行自然语言处理(NLP),涵盖从基础概念、常用工具和库,到高级特性和实际案例的全面内容。通过实际代码示例和项目实践,帮助读者掌握这一强大技术的应用方法。目录自然语言处理概述PythonNLP库介绍数据预处理词向量与嵌入文本分类命名实体识别(NER)问答系统(QA)机器翻译情感分析实战案例:构建一个简单的聊天机器人总结与未来展望1.自然语言处理概述1.1什么是NL
- 自然语言处理之命名实体识别:Flair:命名实体识别基础概念
zhubeibei168
自然语言(二)自然语言处理easyui人工智能深度学习
自然语言处理之命名实体识别:Flair:命名实体识别基础概念一、命名实体识别简介1.1什么是命名实体识别命名实体识别(NamedEntityRecognition,NER)是自然语言处理(NLP)领域的一个重要任务,旨在从文本中识别并分类特定类型的实体,如人名、地名、组织机构名、时间、货币等。这一过程对于信息抽取、问答系统、机器翻译等应用至关重要,因为它帮助系统理解文本中的关键信息,从而做出更准确
- 机器学习 第一章
小白猿同学
机器学习人工智能
机器学习第一章一、什么是机器学习(MachineLearning)让计算机自己从数据中学习出规律,无需人手写规则输入:特征x输出:标签y学习目标:学习出f(x)等价于y二、三大类型任务类型英文特点示例回归Regression输出是连续值房价预测分类Classification输出是类别标签图像识别结构化学习StructuredPrediction输出是结构机器翻译、NER三、模型核心公式y=wx+
- 青少年编程与数学 02-016 Python数据结构与算法 29课题、自然语言处理算法
明月看潮生
编程与数学第02阶段青少年编程python自然语言处理编程与数学算法
青少年编程与数学02-016Python数据结构与算法29课题、自然语言处理算法一、文本预处理1.分词(Tokenization)2.停用词过滤(StopWordsRemoval)二、词性标注(Part-of-SpeechTagging)1.基于规则的词性标注2.基于统计的词性标注三、命名实体识别(NamedEntityRecognition,NER)1.基于规则的NER2.基于深度学习的NER四
- Rasa中config.yml文件信息详细解释
YiHanXii
Rasa人工智能
在Rasa中,config.yml是非常关键的配置文件之一,它的作用是定义你的对话机器人使用哪些模型组件来完成:意图识别(NLU)实体抽取(NER)对话管理(Core)作用简述部分功能recipe指定使用哪种Rasa模型训练流程assistant_id项目的唯一标识符,用于部署和版本管理language机器人处理的语言pipeline定义NLU模块的组件流水线(意图识别+实体识别)policies
- 3DGS与NeRF的区别
失舵之舟-
3dNeRF3DGS3dguassian三维重建重构
3DGS与NeRF的区别0论文链接1简要1.1nerf1.23dgs2隐式几何与显式几何3采样与渲染4光栅化5可微性0论文链接nerf:https://arxiv.org/abs/2003.089343dgs:https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/3d_gaussian_splatting_low.pdf1简要1.1ner
- 英文命名实体识别:Flair
Panesle
总结ner
Flair是一种基于深度学习的自然语言处理框架,它通过字符级语言模型和上下文字符串嵌入(contextualstringembeddings)实现了高质量的命名实体识别(NER)。1.核心思想:上下文字符串嵌入Flair的核心创新在于提出了一种新的词嵌入方法——上下文字符串嵌入(contextualstringembeddings)。这种嵌入方法具有以下特点:基于字符:直接将单词视为字符序列进行建
- DeepSeek:揭秘支持的AI模型与算法全览
鸭鸭鸭进京赶烤
人工智能机器人agiaiopencv算法计算机网络
以下是一些常见的AI模型和算法类型,DeepSeek可能支持的内容:1.自然语言处理(NLP)文本分类:用于情感分析、垃圾邮件检测等。命名实体识别(NER):从文本中提取人名、地点、组织等信息。机器翻译:支持多语言之间的自动翻译。文本生成:如GPT系列模型,用于生成文章、对话等。问答系统:基于BERT等模型的智能问答。语义相似度计算:判断两段文本的语义是否相似。2.计算机视觉(CV)图像分类:识别
- Mac上传本地项目文件夹到远程Github个人仓库的方法及常见报错处理
Uzw
GitMacgitgithubmac
最近写NER模型的同时学习参悟了一个开源的项目,做了一些Comments改了点分词规则,打算上传到个人Github仓库,上一次本地上传还是用Windows系统,换了Mac发现有一些规则不能用了,好久不用Git都忘光了…上传过程中报错无数,在此一并总结啦!文章目录Prerequisite上传本地文件夹到Github步骤报错问题描述及解决方法1.You‘veaddedanothergitreposit
- 电商智能客服实战(三)-需求感知模块具体实现
power-辰南
企业级AI项目实战人工智能NERNLU自然语言AIAGENT
电商智能客服实战(一)—概要设计电商智能客服实战(二)需求感知模块模型微调实现一、整体架构设计1.1模块定位需求感知模块作为智能客服系统的前端处理单元,负责对用户输入进行多维度解析,输出结构化语义理解结果,为下游决策引擎提供数据支撑。1.2核心流程图用户输入需求感知模块情感分析NLU意图识别NER实体识别参数提取规划模块AutoGPT生成步骤规则引擎匹配反馈集成工具模块订单查询API工单API知识
- 基于 BERT 的自定义中文命名实体识别实现
风清扬【coder】
自然语言分析处理自然语言处理bertnlptransformer
基于BERT的自定义中文命名实体识别实现在自然语言处理中,命名实体识别(NamedEntityRecognition,NER)是一项重要的任务,旨在识别文本中的特定实体,如人名、地名、组织机构名等。本文将介绍如何使用BERT模型实现自定义中文命名实体识别,并提供详细的代码分析和解读。一、项目背景命名实体识别在许多领域都有广泛的应用,如信息提取、问答系统、机器翻译等。传统的命名实体识别方法通常基于规
- 人工智能训练师如何做文本数据标注?
小宝哥Code
人工智能训练师人工智能
在人工智能训练中,文本数据标注是非常重要的一个环节。文本数据标注是对数据进行结构化、分类、分词、情感分析、命名实体识别(NER)等操作,为机器学习模型提供准确的输入。以下是常见的文本数据标注任务和对应的Python代码示例。1.文本分类标注文本分类标注是对文本数据进行分类的任务。通常我们会将文本数据标注为不同的类别,比如“体育”、“娱乐”、“政治”等。示例:假设我们有一组新闻文本,我们需要为其分配
- TPAMI 2024 | SSR-2D: 从2D图像进行语义3D场景重建
小白学视觉
论文解读IEEETPAMI深度学习顶刊论文论文解读TPAMI
论文信息题目:SSR-2D:Semantic3DSceneReconstructionFrom2DImagesSSR-2D:从2D图像进行语义3D场景重建作者:JunwenHuang,AlexeyArtemov,YujinChen,ShuaifengZhi,KaiXu,andMatthiasNießner论文创新点首次提出了一种基于深度学习的方法,能够在不使用任何3D标注的情况下,从不完整的RGB
- LTP/pyltp安装和使用教程
Cachel wood
自然语言处理nlpeasyui前端javascriptpyltpltp人工智能nlp
文章目录LTP介绍分句分词加载外部词典个性化分词词性标注命名实体识别NER依存句法分析语义角色标注LTP介绍官网:https://ltp.ai/下载可以到官网的下载专区:https://ltp.ai/download.html语言技术平台(LanguageTechnologyPlatform,LTP):是哈工大社会计算与信息检索研究中心历时十年研制的一整套开放中文自然语言处理系统。提供了一整套自底
- 【NLP算法面经】NLP算法面经 -- 腾讯 VS 美团(附面题)
青松ᵃⁱ
NLP百面百过AI面试NLP面试算法面试人工智能
博客主页:[青松]目录【NLP百面百过】大模型算法高频面题(全面整理ʘ‿ʘ)一、大模型(LLMs)基础面大模型(LLMs)架构篇注意力机制(Attention)篇Transformer理论篇二、大模型微调面有监督微调(SFT)篇高效微调篇提示学习篇人类对齐训练(RLHF)篇Prompt工程篇三、大模型进阶面大模型压缩篇分布式训练篇大模型魔改篇四、NLP任务实战面文本分类篇命名实体识别(NER)篇关
- python 命名实体识别_Python NLTK学习11(命名实体识别和关系抽取)
weixin_39630762
python命名实体识别
PythonNLTK学习11(命名实体识别和关系抽取)发表于:2017年7月27日阅读:18262除特别注明外,本站所有文章均为小杰Code原创本系列博客为学习《用Python进行自然语言处理》一书的学习笔记。命名实体识别命名实体识别(NER)系统的目标是识别所有文字提及的命名实体。可以分解成两个子任务:确定NE的边界和确定其类型。命名实体识别非常适用于基于分类器类型的方法来处理的任务。NLTK有
- python命名实体识别工具,斯坦福大学使用NLTK命名实体识别器(NER)功能
宇宙探索未解之迷
python命名实体识别工具
Isthispossible:toget(similarto)StanfordNamedEntityRecognizerfunctionalityusingjustNLTK?Isthereanyexample?Inparticular,IaminterestedinextractionLOCATIONpartoftext.Forexample,fromtextThemeetingwillbehel
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源