lakala反欺诈建模实际应用代码GBDT监督学习

/**
  * Created by lkl on 2018/1/16.
  */
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.tree.GradientBoostedTrees
import org.apache.spark.mllib.tree.configuration.BoostingStrategy
import org.apache.spark.mllib.tree.model.GradientBoostedTreesModel
import org.apache.spark.sql.{Row, SaveMode}
import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.sql.types.{DoubleType, StringType, StructField, StructType}
import org.apache.spark.{SparkConf, SparkContext}
import scala.collection.mutable.ArrayBuffer
object abregression3Model20180116 {
  def main(args: Array[String]): Unit = {

    val sparkConf = new SparkConf().setAppName("abregression3Model20180116")
    val sc = new SparkContext(sparkConf)
    val hc = new HiveContext(sc)
    val data = hc.sql(s"select * from lkl_card_score.fqz_score_dataset_03train").map {
      row =>
        val arr = new ArrayBuffer[Double]()
        //剔除label、phone字段
        for (i <- 3 until row.size) {
          if (row.isNullAt(i)) {
            arr += 0.0
          }
          else if (row.get(i).isInstanceOf[Int])
            arr += row.getInt(i).toDouble
          else if (row.get(i).isInstanceOf[Double])
            arr += row.getDouble(i)
          else if (row.get(i).isInstanceOf[Long])
            arr += row.getLong(i).toDouble
          else if (row.get(i).isInstanceOf[String])
            arr += 0.0
        }
        LabeledPoint(row.getInt(2).toDouble, Vectors.dense(arr.toArray))
    }

    // Split data into training (60%) and test (40%)
    val Array(trainingData, testData) = data.randomSplit(Array(0.7,0.3), seed = 11L)
    // 逻辑回归是迭代算法,所以缓存训练数据的RDD
    trainingData.cache()
    //使用SGD算法运行逻辑回归

    val boostingStrategy = BoostingStrategy.defaultParams("Regression")
    boostingStrategy.setNumIterations(40) // Note: Use more iterations in practice.
    boostingStrategy.treeStrategy.setMaxDepth(6)
    boostingStrategy.treeStrategy.setMinInstancesPerNode(50)
    val model = GradientBoostedTrees.train(data, boostingStrategy)
    model.save(sc, s"hdfs://ns1/user/songchunlin/model/abregression3Model20180116")

    sc.makeRDD(Seq(model.toDebugString)).repartition(1).saveAsTextFile(s"hdfs://ns1/user/songchunlin/model/toDebugString/abregression3Model20180116")
    // 全量data数据打分,原本用testData打分
    val  omodel=GradientBoostedTreesModel.load(sc,s"hdfs://ns1/user/songchunlin/model/abregression3Model20180116")
    val predictionAndLabels = data.map { case LabeledPoint(label, features) =>
      val prediction = omodel.predict(features)
      (prediction, label)
    }


    println("testData count = " + testData.count())
    println("predictionAndLabels count = " + predictionAndLabels.count())
    predictionAndLabels.map(x => {"predicts: "+x._1+"--> labels:"+x._2}).saveAsTextFile(s"hdfs://ns1/user/szdsjkf/model_training/jrsc/20171218/predictionAndLabels")

    val metrics = new BinaryClassificationMetrics(predictionAndLabels)

    val precision = metrics.precisionByThreshold

    precision.map({case (t, p) =>
      "Threshold: "+t+"Precision:"+p
    }).saveAsTextFile(s"hdfs://ns1/user/szdsjkf/model_training/jrsc/20171218/precision")

    val recall = metrics.recallByThreshold

    recall.map({case (t, r) =>
      "Threshold: "+t+"Recall:"+r
    }).saveAsTextFile(s"hdfs://ns1/user/szdsjkf/model_training/jrsc/20171218/recall")

    val beta = 2
    val f2Score = metrics.fMeasureByThreshold(beta)

    f2Score.map(x => {"Threshold: "+x._1+"--> F-score:"+x._2+"--> Beta = 2"})
      .saveAsTextFile(s"hdfs://ns1/user/szdsjkf/model_training/jrsc/20171218/f1Score")


    val prc = metrics.pr
    prc.map(x => {"Recall: " + x._1 + "--> Precision: "+x._2 }).saveAsTextFile(s"hdfs://ns1/user/szdsjkf/model_training/jrsc/20171218/prc")

    // AUPRC,精度,召回曲线下的面积
    val auPRC = metrics.areaUnderPR
    println("Area under precision-recall curve = " +auPRC)
    sc.makeRDD(Seq("Area under precision-recall curve = " +auPRC)).saveAsTextFile(s"hdfs://ns1/user/szdsjkf/model_training/jrsc/20171218/auPRC")

    //roc
    val roc = metrics.roc
    roc.map(x => {"FalsePositiveRate:" + x._1 + "--> Recall: " +x._2}).saveAsTextFile(s"hdfs://ns1/user/szdsjkf/model_training/jrsc/20171218/roc")

    // AUC
    val auROC = metrics.areaUnderROC
    sc.makeRDD(Seq("Area under ROC = " + +auROC)).saveAsTextFile(s"hdfs://ns1/user/szdsjkf/model_training/jrsc/20171218/auROC")
    println("Area under ROC = " + auROC)
    //val accuracy = 1.0 * predictionAndLabels.filter(x => x._1 == x._2).count() / testData.count()


    val dataInstance = hc.sql(s"select * from lkl_card_score.fqz_score_dataset_03train").map {
      row =>
        val arr = new ArrayBuffer[Double]()
        //剔除label、phone字段
        for (i <- 3 until row.size) {
          if (row.isNullAt(i)) {
            arr += 0.0
          }
          else if (row.get(i).isInstanceOf[Int])
            arr += row.getInt(i).toDouble
          else if (row.get(i).isInstanceOf[Double])
            arr += row.getDouble(i)
          else if (row.get(i).isInstanceOf[Long])
            arr += row.getLong(i).toDouble
          else if (row.get(i).isInstanceOf[String])
            arr += 0.0
        }
        (row(0),row(1),row(2),Vectors.dense(arr.toArray))
    }

    val preditDataGBDT = dataInstance.map { point =>
      val prediction = model.predict(point._4)
      //order_id,apply_time,score
      (point._1,point._2,point._3,prediction)
    }

    //rdd转dataFrame
    val rowRDD = preditDataGBDT.map(row => Row(row._1.toString,row._2.toString,row._3.toString,row._4))
    val schema = StructType(
      List(
        StructField("order_id", StringType, true),
        StructField("apply_time", StringType, true),
        StructField("label", StringType, true),
        StructField("score", DoubleType, true)
      )
    )
    //将RDD映射到rowRDD,schema信息应用到rowRDD上
    val scoreDataFrame = hc.createDataFrame(rowRDD,schema)
    scoreDataFrame.count()
    scoreDataFrame.write.mode(SaveMode.Overwrite).saveAsTable("lkl_card_score.fqz_score_dataset_03train_predict")


    //   自己测试建模

    val balance = hc.sql(s"select * from lkl_card_score.overdue_result_all_new_woe_instant_v3_02train where label='1' limit 85152 union all  select * from lkl_card_score.overdue_result_all_new_woe_instant_v3_02train where label='0'").map {
      row =>
        val arr = new ArrayBuffer[Double]()
        //剔除label、phone字段
        for (i <- 3 until row.size) {
          if (row.isNullAt(i)) {
            arr += 0.0
          }
          else if (row.get(i).isInstanceOf[Int])
            arr += row.getInt(i).toDouble
          else if (row.get(i).isInstanceOf[Double])
            arr += row.getDouble(i)
          else if (row.get(i).isInstanceOf[Long])
            arr += row.getLong(i).toDouble
          else if (row.get(i).isInstanceOf[String])
            arr += 0.0
        }
        LabeledPoint(row.getInt(2).toDouble, Vectors.dense(arr.toArray))
    }



    // 逻辑回归是迭代算法,所以缓存训练数据的RDD
    balance.cache()
    val boostingStrategy1 = BoostingStrategy.defaultParams("Regression")
    boostingStrategy1.setNumIterations(40) // Note: Use more iterations in practice.
    boostingStrategy1.treeStrategy.setMaxDepth(6)
    boostingStrategy1.treeStrategy.setMinInstancesPerNode(50)

    val model2 = GradientBoostedTrees.train(balance, boostingStrategy1)


    val predictionAndLabels2 = data.map { case LabeledPoint(label, features) =>
      val prediction = model2.predict(features)
      (prediction, label)
    }
    val metrics2 = new BinaryClassificationMetrics(predictionAndLabels2)
    // AUPRC,精度,召回曲线下的面积
    val auPRC1 = metrics2.areaUnderPR

    val preditDataGBDT1 = dataInstance.map { point =>
      val prediction2 = model2.predict(point._4)
      //order_id,apply_time,score
      (point._1,point._2,point._3,prediction2)
    }
    //rdd转dataFrame
    val rowRDD2 = preditDataGBDT1.map(row => Row(row._1.toString,row._2.toString,row._3.toString,row._4))
    val schema2 = StructType(
      List(
        StructField("order_id", StringType, true),
        StructField("apply_time", StringType, true),
        StructField("label", StringType, true),
        StructField("score", DoubleType, true)
      )
    )

    val scoreDataFrame2 = hc.createDataFrame(rowRDD2,schema2)
    scoreDataFrame2.count()
    scoreDataFrame2.write.mode(SaveMode.Overwrite).saveAsTable("lkl_card_score.fqz_score_dataset_02val_170506_predict")

  }
}

 

转载于:https://www.cnblogs.com/canyangfeixue/p/8296511.html

你可能感兴趣的:(大数据,数据结构与算法,人工智能)