数理统计复习笔记六——Pearson卡方拟合优度检验

一、分类数据的 χ 2 \chi^2 χ2拟合优度检验

1.1 一般情形下的检验问题

根据某项指标,总体被分为 r r r类: A 1 , ⋯   , A r A_1,\cdots,A_r A1,,Ar。此时我们最关心的是关于各类所占的比例的假设 H 0 : 第 i 类 A i 所 占 的 比 例 为 p i , i = 1 , ⋯   , r (1) H_0:第i类A_i所占的比例为p_i,i=1,\cdots,r\tag1 H0:iAipi,i=1,,r(1)
其中, ∑ i = 1 r p i = 1 \sum\limits_{i=1}^rp_i=1 i=1rpi=1

X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn为从此总体抽出的 n n n I I D IID IID总体,且以 n i n_i ni记这 n n n个样本中属于 A i A_i Ai的样本个数。当 H 0 H_0 H0成立时,在 n n n个样本中属于 A i A_i Ai类的理论个数或期望个数为 n p i np_i npi,而我们实际观测到的值为 n i n_i ni,故当 H 0 H_0 H0成立时, n i n_i ni n p i np_i npi应相差不大。于是,可以用统计量 χ 2 = ∑ i = 1 r ( n i − n p i ) 2 n p i (2) \chi^2=\sum_{i=1}^r\frac{(n_i-np_i)^2}{np_i}\tag2 χ2=i=1rnpi(ninpi)2(2)来衡量理论个数与实际观测值之间的差别,并且其拒绝域为 { χ 2 ≥ c } \{\chi^2\ge c\} { χ2c}

1.2 定理

为了控制上述检验犯第一类错误的概率,我们必须知道此检验统计量的零分布,为此有以下定理:

H 0 H_0 H0成立且 p i p_i pi均已知时,我们有 χ 2 → χ 2 ( r − 1 ) (3) \chi^2\to\chi^2(r-1)\tag3 χ2χ2(r1)(3)

所以可以得到拒绝域为 W = { χ 2 ≥ χ α 2 ( r − 1 ) } (4) W=\{\chi^2\ge\chi^2_\alpha(r-1)\}\tag4 W={ χ2χα2(r1)}(4)

二、关于分布的假设

2.1 完全已知的分布

对于一般的分布假设 H 0 : F ( x ) ≡ F 0 ( x ) (5) H_0:F(x)\equiv F_0(x)\tag5 H0:F(x)F0(x)(5)
其中, F 0 ( x ) F_0(x) F0(x)为一个完全已知的分布函数(形式和参数均已知)

此时,可以把 ( − ∞ , ∞ ) (-\infty, \infty) (,)(或样本空间)分成 r r r个互不相交的区间: ( − ∞ , ∞ ) = ⋃ i = 1 r I i = ( − ∞ , a 1 ) ∪ [ a 1 , a 2 ) ∪ ⋯ ∪ [ a r − 1 , ∞ ) (6) (-\infty, \infty)=\bigcup_{i=1}^rI_i=(-\infty,a_1)\cup[a_1,a_2)\cup\cdots\cup[a_{r-1},\infty)\tag6 (,)=i=1rIi=(,a1)[a1,a2)[ar1,)(6)
且以 n i n_i ni记落在第 i i i个区间 I i I_i Ii内的样本个数,再记 p 1 = F ( a 1 ) , p 2 = F ( a 2 ) − F ( a 1 ) , ⋯   , p r = 1 − F ( a r − 1 ) (7) p_1=F(a_1), p_2=F(a_2)-F(a_1),\cdots,p_r=1-F(a_{r-1})\tag7 p1=F(a1),p2=F(a2)F(a1),,pr=1F(ar1)(7) p 10 = F 0 ( a 1 ) , p 20 = F 0 ( a 2 ) − F 0 ( a 1 ) , ⋯   , p r 0 = 1 − F 0 ( a r − 1 ) (8) p_{10}=F_0(a_1), p_{20}=F_0(a_2)-F_0(a_1),\cdots,p_{r0}=1-F_0(a_{r-1})\tag8 p10=F0(a1),p20=F0(a2)F0(a1),,pr0=1F0(ar1)(8)
则我们可以用统计量 χ 2 = ∑ i = 1 r ( n i − n p i 0 ) 2 n p i 0 (9) \chi^2=\sum_{i=1}^r\frac{(n_i-np_{i0})^2}{np_{i0}}\tag9 χ2=i=1rnpi0(ninpi0)2(9)
来检验。

  • 我们检验的假设为 H 0 : p i = p i 0 H_0:p_i=p_{i0} H0:pi=pi0,所以如果分点选的不是很好,可能会把两个有一定差别的分布检验为没有区别
  • 在一般情形下,分点的选取应保证落在每个区间内的样本点个数不小于 5 5 5,且总的样本容量不应小于 30 30 30
  • F 0 F_0 F0中含有未知参数时,上述拟合优度检验无法实施

2.2 带有未知参数的 χ 2 \chi^2 χ2拟合优度检验

在许多实际问题中,我们感兴趣的假设可能为 H 0 : F ( x ) ≡ F 0 ( x ; θ 1 , ⋯   , θ k ) (10) H_0:F(x)\equiv F_0(x;\theta_1,\cdots,\theta_k)\tag{10} H0:F(x)F0(x;θ1,,θk)(10)
其中, F 0 ( x ; θ 1 , ⋯   , θ k ) F_0(x;\theta_1,\cdots,\theta_k) F0(x;θ1,,θk)是依赖于 k k k个未知参数的形式已知的分布,如一般的正态分布,二项分布等。

Fisher指出,当 H 0 H_0 H0成立时,可先用MLE估计未知参数,可以得到 p ^ i 0 \hat p_{i0} p^i0的值,之后可以利用统计量 χ 2 = ∑ i = 1 r ( n i − n p ^ i 0 ) 2 n p ^ i 0 (11) \chi^2=\sum_{i=1}^r\frac{(n_i-n\hat p_{i0})^2}{n\hat p_{i0}}\tag{11} χ2=i=1rnp^i0(ninp^i0)2(11)
作为检验统计量,且当 H 0 H_0 H0成立时及 n → ∞ n\to\infty n时,仍有 χ 2 → χ 2 ( r − 1 − k ) \chi^2\to\chi^2(r-1-k) χ2χ2(r1k)

你可能感兴趣的:(概率论与数理统计,统计学,数据分析)