实验六 MapReduce数据清洗-气象数据清洗

实验六 MapReduce数据清洗-气象数据清洗

  • 第1关:数据清洗
    • 任务描述
    • 编程要求
    • 测试说明
    • 代码实现
      • 命令行
      • 代码文件
        • step1/com/Weather.java
        • step1/com/WeatherMap.java
        • step1/com/WeatherReduce.java
        • step1/com/Auto.java
        • step1/com/WeatherTest.java

第1关:数据清洗

任务描述

本关任务:对数据按照一定规则进行清洗。

编程要求

根据提示,在右侧编辑器补充代码,对数据按照一定规则进行清洗。
数据说明如下:a.txt;
数据切分方式:一个或多个空格;
数据所在位置:/user/test/input/a.txt;

2005 01 01 16 -6 -28 10157 260 31 8 0 -9999

2005 01 01 16 -6 -28 10157 260 31 8 0 -9999
年 月 日 小时 温度 湿度 气压 风向 风速 天气情况 1h降雨量 6h降雨量
sky.txt;
数据切分方式:逗号;
数据所在位置:data/sky.txt或者/user/test/input/sky.txt

1,积云

1 积云
天气情况 cumulus
清洗规则:

将分隔符转化为逗号;
清除不合法数据:字段长度不足,风向不在[0,360]的,风速为负的,气压为负的,天气情况不在[0,10],湿度不在[0,100],温度不在[-40,50]的数据;
将a.txt与sky.txt的数据以天气情况进行join操作,把天气情况变为其对应的云属;
对进入同一个分区的数据排序; 排序规则: (1)同年同月同天为key; (2)按每日温度升序; (3)若温度相同则按风速升序; (4)风速相同则按压强降序。
设置数据来源文件路径及清洗后的数据存储路径: 数据来源路径为: /user/test/input/a.txt (HDFS); 清洗后的数据存放于:/user/test/output (HDFS)。
数据清洗后如下:

2005,01,01,16,-6,-28,10157,260,31,卷云,0,-9999

测试说明

平台会对你编写的代码进行测试:
评测之前先在命令行启动hadoop:start-all.sh;
Weather:封装对象;
WeatherMap:map端操作;
WeatherReduce:reduce端操作;
Auto:自定义分区;
WeatherTest:测试结果类。
具体本关的预期输出请查看右侧测试集。

因为大数据实训消耗资源较大,且map/reduce运行比较耗时,所以评测时间较长,大概在60秒左右,请耐心等待。

开始你的任务吧,祝你成功!

代码实现

命令行

start-all.sh

代码文件

step1/com/Weather.java

package com;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;
/**封装对象*/
public class Weather implements WritableComparable {
    //年
    private String year;
    //月
    private String month;
    //日
    private String day;
    //小时
    private String hour;
    //温度
    private int temperature;
    //湿度
    private String dew;
    //气压/压强
    private int pressure;
    //风向
    private String wind_direction;
    //风速
    private int wind_speed;
    //天气情况
    private String sky_condition;
    //1小时降雨量
    private String rain_1h;
    //6小时降雨量
    private String rain_6h;
    public String getYear() {
        return year;
    }
    public void setYear(String year) {
        this.year = year;
    }
    public String getMonth() {
        return month;
    }
    public void setMonth(String month) {
        this.month = month;
    }
    public String getDay() {
        return day;
    }
    public void setDay(String day) {
        this.day = day;
    }
    public String getHour() {
        return hour;
    }
    public void setHour(String hour) {
        this.hour = hour;
    }
    public int getTemperature() {
        return temperature;
    }
    public void setTemperature(int temperature) {
        this.temperature = temperature;
    }
    public String getDew() {
        return dew;
    }
    public void setDew(String dew) {
        this.dew = dew;
    }
    public int getPressure() {
        return pressure;
    }
    public void setPressure(int pressure) {
        this.pressure = pressure;
    }
    public String getWind_direction() {
        return wind_direction;
    }
    public void setWind_direction(String wind_direction) {
        this.wind_direction = wind_direction;
    }
    public int getWind_speed() {
        return wind_speed;
    }
    public void setWind_speed(int wind_speed) {
        this.wind_speed = wind_speed;
    }
    public String getSky_condition() {
        return sky_condition;
    }
    public void setSky_condition(String sky_condition) {
        this.sky_condition = sky_condition;
    }
    public String getRain_1h() {
        return rain_1h;
    }
    public void setRain_1h(String rain_1h) {
        this.rain_1h = rain_1h;
    }
    public String getRain_6h() {
        return rain_6h;
    }
    public void setRain_6h(String rain_6h) {
        this.rain_6h = rain_6h;
    }
/********** begin **********/
     @Override
    public String toString() {
        return year + "," + month + "," + day + "," + hour + "," + temperature + "," + dew + "," + pressure + ","
                + wind_direction + "," + wind_speed + "," + sky_condition + "," + rain_1h + "," + rain_6h;
    }
/********** end **********/
    public Weather() {
    }
    public Weather(String year, String month, String day, String hour, int temperature, String dew, int pressure,
            String wind_direction, int wind_speed, String sky_condition, String rain_1h, String rain_6h) {
        this.year = year;
        this.month = month;
        this.day = day;
        this.hour = hour;
        this.temperature = temperature;
        this.dew = dew;
        this.pressure = pressure;
        this.wind_direction = wind_direction;
        this.wind_speed = wind_speed;
        this.sky_condition = sky_condition;
        this.rain_1h = rain_1h;
        this.rain_6h = rain_6h;
    }
    public void readFields(DataInput in) throws IOException {
        year = in.readUTF();
        month = in.readUTF();
        day = in.readUTF();
        hour = in.readUTF();
        temperature = in.readInt();
        dew = in.readUTF();
        pressure = in.readInt();
        wind_direction = in.readUTF();
        wind_speed = in.readInt();
        sky_condition = in.readUTF();
        rain_1h = in.readUTF();
        rain_6h = in.readUTF();
    }
    public void write(DataOutput out) throws IOException {
        out.writeUTF(year);
        out.writeUTF(month);
        out.writeUTF(day);
        out.writeUTF(hour);
        out.writeInt(temperature);
        out.writeUTF(dew);
        out.writeInt(pressure);
        out.writeUTF(wind_direction);
        out.writeInt(wind_speed);
        out.writeUTF(sky_condition);
        out.writeUTF(rain_1h);
        out.writeUTF(rain_6h);
    }
    public int compareTo(Weather o) {
        /********** begin **********/
        int tmp = this.month.compareTo(o.month);
        if (tmp == 0) {
            tmp = this.day.compareTo(o.day);
            if (tmp == 0) {
                tmp = this.temperature - o.temperature;
                if (tmp == 0) {
                    tmp = this.wind_speed - o.wind_speed;
                    if (tmp == 0) {
                        tmp = o.pressure - this.pressure;
                        return tmp;
                    }
                    return tmp;
                }
                return tmp;
            }
            return tmp;
        }
        return tmp;
        /********** end **********/
    }
}

step1/com/WeatherMap.java

在这里插入代码片package com;
import java.io.*;
import java.util.HashMap;
import java.util.Map.Entry;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import javax.sound.midi.Soundbank;

public class WeatherMap extends Mapper {
    /********** begin **********/
Text text = new Text();
    HashMap map = new HashMap();
    @Override
    protected void setup(Context context) throws IOException, InterruptedException {
        File f=new File("data/sky.txt");
        InputStream inputStream = new FileInputStream(f);
        BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(inputStream));
        String line = null;
        while ((line = bufferedReader.readLine()) != null) {
            System.out.println(line);
            String[] split = line.split(",");
            map.put(split[0], split[1]);
        }
        bufferedReader.close();
        inputStream.close();
    }
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String line = value.toString();
        String split[] = line.split("\\s+");
        String year = split[0];
        String month = split[1];
        String day = split[2];
        String hour = split[3];
        int temperature = Integer.valueOf(split[4]);
        String dew = split[5];
        int pressure = Integer.valueOf(split[6]);
        String wind_direction = split[7];
        int wind_speed = Integer.valueOf(split[8]);
        String sky_condition = split[9];
        String rain_1h = split[10];
        String rain_6h = split[11];
        if (split.length != 12 || pressure < 0
                || Integer.valueOf(wind_direction) < 0 || Integer.valueOf(wind_direction) > 360
                || Integer.valueOf(sky_condition) < 0 || Integer.valueOf(sky_condition) > 10
                ||  temperature< -40 || temperature>50
                ||  Integer.valueOf(dew)< 0 || Integer.valueOf(dew)>100
                || wind_speed<0
         ) {
            return;
        }
        for (Entry entry : map.entrySet()) {
            if (sky_condition.equals(entry.getKey())) {
                sky_condition = entry.getValue();
            }
        }
        Weather weather = new Weather(year, month, day, hour, temperature, dew, pressure, wind_direction, wind_speed,
                sky_condition, rain_1h, rain_6h);
        context.write(weather, NullWritable.get());
    }
    /********** end **********/
}

step1/com/WeatherReduce.java

package com;
import java.io.IOException;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Reducer;
public class WeatherReduce extends Reducer {
    /********** begin **********/
@Override
    protected void reduce(Weather key, Iterable values, Context context)
            throws IOException, InterruptedException {
        for (NullWritable nullWritable : values) {
            context.write(key, NullWritable.get());
        }
    }
    /********** end **********/
}

step1/com/Auto.java

package com;
import java.util.HashMap;
import java.util.Map;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Partitioner;

/*** 自定义分区 ***/
public class Auto extends Partitioner {
    /********** begin **********/
public static Map provinceDict = new HashMap();
    static {
        int a = 0;
        for (int i = 1980; i <= 1981; i++) {
            provinceDict.put(i + "", a);
            a++;
        }
    }
    public int getPartition(Weather key, NullWritable nullWritable, int numPartitions) {
        Integer id = provinceDict.get(key.toString().substring(0, 4));
        return id == null ? 2 : id;
    }
    /********** end **********/
}

step1/com/WeatherTest.java

package com;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WeatherTest {
    public static void main(String[] args) throws Exception {
        /********** begin **********/
Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);
        job.setJarByClass(WeatherTest.class);
        job.setMapperClass(WeatherMap.class);
        job.setMapOutputKeyClass(Weather.class);
        job.setMapOutputValueClass(NullWritable.class);
        job.setReducerClass(WeatherReduce.class);
        job.setOutputKeyClass(NullWritable.class);
        job.setOutputValueClass(Weather.class);
        job.setNumReduceTasks(3);
        job.setPartitionerClass(Auto.class);
        Path inPath = new Path("/user/test/input/a.txt");
        Path out = new Path("/user/test/output");
        FileInputFormat.setInputPaths(job, inPath);
        FileOutputFormat.setOutputPath(job, out);
        job.waitForCompletion(true);

        /********** end **********/
    }
}

你可能感兴趣的:(大数据,头歌,mapreduce,big,data,hadoop)