1.后进者先出,先进者后出,这就是典型的“栈”结构。
2.从栈的操作特性来看,是一种“操作受限”的线性表,只允许在端插入和删除数据。
1.栈是一种操作受限的数据结构,其操作特性用数组和链表均可实现。
2.但,任何数据结构都是对特定应用场景的抽象,数组和链表虽然使用起来更加灵活,但却暴露了几乎所有的操作,难免会引发错误操作的风险。
3.所以,当某个数据集合只涉及在某端插入和删除数据,且满足后进者先出,先进者后出的操作特性时,我们应该首选栈这种数据结构。
1.栈的API
public class Stack {
//压栈
public void push(Item item){}
//弹栈
public Item pop(){}
//是否为空
public boolean isEmpty(){}
//栈中数据的数量
public int size(){}
//返回栈中最近添加的元素而不删除它
public Item peek(){}
}
时间复杂度分析:根据均摊复杂度的定义,可以得数组实现(自动扩容)符合大多数情况是O(1)级别复杂度,个别情况是O(n)级别复杂度,比如自动扩容时,会进行完整数据的拷贝。
空间复杂度分析:在入栈和出栈的过程中,只需要一两个临时变量存储空间,所以O(1)级别。我们说空间复杂度的时候,是指除了原本的数据存储空间外,算法运行还需要额外的存储空间。
// 基于数组实现的顺序栈
public class ArrayStack {
private String[] items; // 数组
private int count; // 栈中元素个数
private int n; //栈的大小
// 初始化数组,申请一个大小为n的数组空间
public ArrayStack(int n) {
this.items = new String[n];
this.n = n;
this.count = 0;
}
// 入栈操作
public boolean push(String item) {
// 数组空间不够了,直接返回false,入栈失败。
if (count == n) return false;
// 将item放到下标为count的位置,并且count加一
items[count] = item;
++count;
return true;
}
// 出栈操作
public String pop() {
// 栈为空,则直接返回null
if (count == 0) return null;
// 返回下标为count-1的数组元素,并且栈中元素个数count减一
String tmp = items[count-1];
--count;
return tmp;
}
}
时间复杂度分析:压栈和弹栈的时间复杂度均为O(1)级别,因为只需更改单个节点的索引即可。
空间复杂度分析:在入栈和出栈的过程中,只需要一两个临时变量存储空间,所以O(1)级别。我们说空间复杂度的时候,是指除了原本的数据存储空间外,算法运行还需要额外的存储空间。
实现代码:(见另一条留言)
public class StackOfLinked<Item> implements Iterable<Item> {
//定义一个内部类,就可以直接使用类型参数
private class Node{
Item item;
Node next;
}
private Node first;
private int N;
//构造器
public StackOfLinked(){
}
//添加
public void push(Item item){
Node oldfirst = first;
first = new Node();
first.item = item;
first.next = oldfirst;
N++;
}
//删除
public Item pop(){
Item item = first.item;
first = first.next;
N--;
return item;
}
//是否为空
public boolean isEmpty(){
return N == 0;
}
//元素数量
public int size(){
return N;
}
//返回栈中最近添加的元素而不删除它
public Item peek(){
return first.item;
}
@Override
public Iterator<Item> iterator() {
return new LinkedIterator();
}
//内部类:迭代器
class LinkedIterator implements Iterator{
int i = N;
Node t = first;
@Override
public boolean hasNext() {
return i > 0;
}
@Override
public Item next() {
Item item = (Item) t.item;
t = t.next;
i--;
return item;
}
}
}
操作系统给每个线程分配了一块独立的内存空间,这块内存被组织成“栈”这种结构,用来存储函数调用时的临时变量。每进入一个函数,就会将其中的临时变量作为栈帧入栈,当被调用函数执行完成,返回之后,将这个函数对应的栈帧出栈。
利用两个栈,其中一个用来保存操作数,另一个用来保存运算符。我们从左向右遍历表达式,当遇到数字,我们就直接压入操作数栈;当遇到运算符,就与运算符栈的栈顶元素进行比较,若比运算符栈顶元素优先级高,就将当前运算符压入栈,若比运算符栈顶元素的优先级低或者相同,从运算符栈中取出栈顶运算符,从操作数栈顶取出2个操作数,然后进行计算,把计算完的结果压入操作数栈,继续比较。
用栈保存为匹配的左括号,从左到右一次扫描字符串,当扫描到左括号时,则将其压入栈中;当扫描到右括号时,从栈顶取出一个左括号,如果能匹配上,则继续扫描剩下的字符串。如果扫描过程中,遇到不能配对的右括号,或者栈中没有数据,则说明为非法格式。
当所有的括号都扫描完成之后,如果栈为空,则说明字符串为合法格式;否则,说明未匹配的左括号为非法格式。
我们使用两个栈X和Y,我们把首次浏览的页面依次压如栈X,当点击后退按钮时,再依次从栈X中出栈,并将出栈的数据一次放入Y栈。当点击前进按钮时,我们依次从栈Y中取出数据,放入栈X中。当栈X中没有数据时,说明没有页面可以继续后退浏览了。当Y栈没有数据,那就说明没有页面可以点击前进浏览了。
内存中的堆栈和数据结构堆栈不是一个概念,可以说内存中的堆栈是真实存在的物理区,数据结构中的堆栈是抽象的数据存储结构。
内存空间在逻辑上分为三部分:代码区、静态数据区和动态数据区,动态数据区又分为栈区和堆区。
1.先进者先出,这就是典型的“队列”结构。
2.支持两个操作:入队enqueue(),放一个数据到队尾;出队dequeue(),从队头取一个元素。
3.所以,和栈一样,队列也是一种操作受限的线性表。
public interface Queue {
public void enqueue(T item); //入队
public T dequeue(); //出队
public int size(); //统计元素数量
public boolean isNull(); //是否为空
}
** 2.1 数组**
// 用数组实现的队列
public class ArrayQueue {
// 数组:items,数组大小:n
private String[] items;
private int n = 0;
// head表示队头下标,tail表示队尾下标
private int head = 0;
private int tail = 0;
// 申请一个大小为capacity的数组
public ArrayQueue(int capacity) {
items = new String[capacity];
n = capacity;
}
// 入队
public boolean enqueue(String item) {
// 如果tail == n 表示队列已经满了
if (tail == n) return false;
items[tail] = item;
++tail;
return true;
}
// 出队
public String dequeue() {
// 如果head == tail 表示队列为空
if (head == tail) return null;
// 为了让其他语言的同学看的更加明确,把--操作放到单独一行来写了
String ret = items[head];
++head;
return ret;
}
// 入队操作,将item放入队尾,如图
public boolean enqueue(String item) {
// tail == n表示队列末尾没有空间了
if (tail == n) {
// tail ==n && head==0,表示整个队列都占满了
if (head == 0) return false;
// 数据搬移
for (int i = head; i < tail; ++i) {
items[i-head] = items[i];
}
// 搬移完之后重新更新head和tail
tail -= head;
head = 0;
}
items[tail] = item;
++tail;
return true;
}
}
2.2 循环链表思想
关键队空条件 head == tail
队满判断条件 (tail+1)%n=head
public class CircularQueue {
// 数组:items,数组大小:n
private String[] items;
private int n = 0;
// head表示队头下标,tail表示队尾下标
private int head = 0;
private int tail = 0;
// 申请一个大小为capacity的数组
public CircularQueue(int capacity) {
items = new String[capacity];
n = capacity;
}
// 入队
public boolean enqueue(String item) {
// 队列满了
if ((tail + 1) % n == head) return false;
items[tail] = item;
tail = (tail + 1) % n;
return true;
}
// 出队
public String dequeue() {
// 如果head == tail 表示队列为空
if (head == tail) return null;
String ret = items[head];
head = (head + 1) % n;
return ret;
}
}
2.3 链表实现
public class LinkedQueue {
//定义一个节点类
private class Node{
String value;
Node next;
}
//记录队列元素个数
private int size = 0;
//head指向队头结点,tail指向队尾节点
private Node head;
private Node tail;
//申请一个队列
public LinkedQueue(){
}
//入队
public boolean enqueue(String item){
Node newNode = new Node();
newNode.value = item;
if (size == 0) head = newNode;
else tail.next = newNode;
tail = newNode;
size++;
return true;
}
//出队
public String dequeue(){
String res = null;
if(size == 0) return res;
if(size == 1) tail = null;
res = head.value;
head = head.next;
size--;
return res;
}
1)在队列的基础上增加阻塞操作,就成了阻塞队列。
2)阻塞队列就是在队列为空的时候,从队头取数据会被阻塞,因为此时还没有数据可取,直到队列中有了数据才能返回;如果队列已经满了,那么插入数据的操作就会被阻塞,直到队列中有空闲位置后再插入数据,然后在返回。
3)从上面的定义可以看出这就是一个“生产者-消费者模型”。这种基于阻塞队列实现的“生产者-消费者模型”可以有效地协调生产和消费的速度。当“生产者”生产数据的速度过快,“消费者”来不及消费时,存储数据的队列很快就会满了,这时生产者就阻塞等待,直到“消费者”消费了数据,“生产者”才会被唤醒继续生产。不仅如此,基于阻塞队列,我们还可以通过协调“生产者”和“消费者”的个数,来提高数据处理效率,比如配置几个消费者,来应对一个生产者。
1)在多线程的情况下,会有多个线程同时操作队列,这时就会存在线程安全问题。能够有效解决线程安全问题的队列就称为并发队列。
2)并发队列简单的实现就是在enqueue()、dequeue()方法上加锁,但是锁粒度大并发度会比较低,同一时刻仅允许一个存或取操作。
3)实际上,基于数组的循环队列利用CAS原子操作,可以实现非常高效的并发队列。这也是循环队列比链式队列应用更加广泛的原因。
3.线程池资源枯竭是的处理
在资源有限的场景,当没有空闲资源时,基本上都可以通过“队列”这种数据结构来实现请求排队。
[剑指offer][JAVA]面试题第[09]题[用两个栈实现队列][LinkedList]
主要整理参考作者:姜威
笔记整理来源: 王争 数据结构与算法之美