pandas DataFrame 赋值的注意事项说明(index)

一 pandas DataFrame一列赋值问题

说明,把b的列赋值给a

情况1:a,b index设置相同

如下代码

import pandas as pd
import numpy as np
a = pd.DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz'))
b = pd.DataFrame(np.array([11,22,33,44]),index=list('abcd'),columns=['m'])
a['m'] = b['m']
print(a)

上述代码结果如下

  w  x  y  z  m
a  0  1  2  3 11
b  4  5  6  7 22
c  8  9 10 11 33
d 12 13 14 15 44

情况一是最基本的情况,结果也符合预期,之所以符合预期是因为a,b都设有同样的index,赋值操作按照index来到。如果b不设置Index,而是使用默认的index呢?

情况2:b的index采用默认值

代码如下

import pandas as pd
import numpy as np
a = pd.DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz'))
b = pd.DataFrame(np.array([11,22,33,44]),columns=['m'])
a['m'] = b['m']
print(a)

结果如下

  w  x  y  z  m
a  0  1  2  3 NaN
b  4  5  6  7 NaN
c  8  9 10 11 NaN
d 12 13 14 15 NaN

情况二,结果超出了想象,b中的index为0,1,2,3与a中的index(‘a',‘b',‘c',‘d')不同,在赋值的过程中,是按照a中的index在b中找index相同位置的值,由于index不同,因此,给a赋值为NaN

情况三 : b中的部分Index与a中的相同

代码如下

import pandas as pd
import numpy as np
a = pd.DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz'))
b = pd.DataFrame(np.array([11,22,33,44]),index=list('arpb'),columns=['m'])
a['m'] = b['m']
print(a)

结果如下

  w  x  y  z   m
a  0  1  2  3 11.0
b  4  5  6  7 44.0
c  8  9 10 11  NaN
d 12 13 14 15  NaN

由情况三结果可知,只有Index相同的行,赋值才能成功

总结:

从以上可以看出,Pandas DataFrame严格按照Index进行赋值,如果Index不同的话,则赋值为NaN

补充:python编程过程中DataFrame修改特定单元格值后原数据不变的一个解决方案

最近在参加了一个比赛,里面设计到数据清洗的工作,需要对一些异常值作出修改,往常我都是这样操作的

df[condition]['column'].iloc[0:3] = ......

或者

df[condition]['column'][0:3] = ......

里面condition代表满足条件的逻辑表达式,column表示列名

一般还是管用的,但偶尔会出现错误,主要是df[condition]这种表达在python里面是不够规范的,因此运行以后单元格容易赋值失败。在尝试了很多种方法之后,最后还是使用规范的loc或者iloc表达

df.loc[[row condition],['column']] = ......

例如:

NA.loc[[23,29,49],'北美整体规模'] = ......

或者

df.iloc[np.where(condition),[1:3]]

注意loc里面接的是具体的行列名称,iloc里面接的是满足条件的行列名称所对应的位置数字列表,切忌弄混!

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。

你可能感兴趣的:(pandas DataFrame 赋值的注意事项说明(index))