python翻译[排序高级]


原文:http://wiki.python.org/moin/HowTo/Sorting 

 

 

Python list内置sort()方法用来排序,也可以用python内置的全局sorted()方法来对可迭代的序列排序生成新的序列。

 

1)排序基础
简单的升序排序是非常容易的。只需要调用sorted()方法。它返回一个新的list,新的list的元素基于小于运算符(__lt__)来排序。
>>> sorted([5, 2, 3, 1, 4])
[1, 2, 3, 4, 5]
 

你也可以使用list.sort()方法来排序,此时list本身将被修改。通常此方法不如sorted()方便,但是如果你不需要保留原来的list,此方法将更有效。

>>> a = [5, 2, 3, 1, 4]
>>> a.sort()
>>> a
[1, 2, 3, 4, 5]
 

另一个不同就是list.sort()方法仅被定义在list中,相反地sorted()方法对所有的可迭代序列都有效。

 

>>> sorted({1:  ' D ', 2:  ' B ', 3:  ' B ', 4:  ' E ', 5:  ' A '})
[1, 2, 3, 4, 5]

 

 

2)key参数/函数

从python2.4开始,list.sort()和sorted()函数增加了key参数来指定一个函数,此函数将在每个元素比较前被调用。 例如通过key指定的函数来忽略字符串的大小写:
>>> sorted( " This is a test string from Andrew ".split(), key=str.lower)
[ ' a '' Andrew '' from '' is '' string '' test '' This ']
 

key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较。这个技术是快速的因为key指定的函数将准确地对每个元素调用。

 

更广泛的使用情况是用复杂对象的某些值来对复杂对象的序列排序,例如:

>>> student_tuples = [
        ( ' john '' A ', 15),
        ( ' jane '' B ', 12),
        ( ' dave '' B ', 10),
]
>>> sorted(student_tuples, key= lambda student: student[2])    #  sort by age
[( ' dave '' B ', 10), ( ' jane '' B ', 12), ( ' john '' A ', 15)]
 

同样的技术对拥有命名属性的复杂对象也适用,例如:

>>>  class Student:
         def  __init__(self, name, grade, age):
                self.name = name
                self.grade = grade
                self.age = age
         def  __repr__(self):
                 return repr((self.name, self.grade, self.age))
>>> student_objects = [
        Student( ' john '' A ', 15),
        Student( ' jane '' B ', 12),
        Student( ' dave '' B ', 10),
]
>>> sorted(student_objects, key= lambda student: student.age)    #  sort by age
[( ' dave '' B ', 10), ( ' jane '' B ', 12), ( ' john '' A ', 15)]
 

3)Operator 模块函数

上面的key参数的使用非常广泛,因此python提供了一些方便的函数来使得访问方法更加容易和快速。operator模块有itemgetter,attrgetter,从2.6开始还增加了methodcaller方法。使用这些方法,上面的操作将变得更加简洁和快速:
>>>  from operator  import itemgetter, attrgetter
>>> sorted(student_tuples, key=itemgetter(2))
[( ' dave '' B ', 10), ( ' jane '' B ', 12), ( ' john '' A ', 15)]
>>> sorted(student_objects, key=attrgetter( ' age '))
[( ' dave '' B ', 10), ( ' jane '' B ', 12), ( ' john '' A ', 15)]
 

operator模块还允许多级的排序,例如,先以grade,然后再以age来排序:

>>> sorted(student_tuples, key=itemgetter(1,2))
[( ' john '' A ', 15), ( ' dave '' B ', 10), ( ' jane '' B ', 12)]
>>> sorted(student_objects, key=attrgetter( ' grade '' age '))
[( ' john '' A ', 15), ( ' dave '' B ', 10), ( ' jane '' B ', 12)]
 

4)升序和降序

list.sort()和sorted()都接受一个参数reverse(True or False)来表示升序或降序排序。例如对上面的student降序排序如下:
>>> sorted(student_tuples, key=itemgetter(2), reverse=True)
[( ' john '' A ', 15), ( ' jane '' B ', 12), ( ' dave '' B ', 10)]
>>> sorted(student_objects, key=attrgetter( ' age '), reverse=True)
[( ' john '' A ', 15), ( ' jane '' B ', 12), ( ' dave '' B ', 10)]
 

5)排序的稳定性和复杂排序

从python2.2开始,排序被保证为稳定的。意思是说多个元素如果有相同的key,则排序前后他们的先后顺序不变。
>>> data = [( ' red ', 1), ( ' blue ', 1), ( ' red ', 2), ( ' blue ', 2)]
>>> sorted(data, key=itemgetter(0))
[( ' blue ', 1), ( ' blue ', 2), ( ' red ', 1), ( ' red ', 2)]
注意在排序后'blue'的顺序被保持了,即'blue', 1在'blue', 2的前面。
 

更复杂地你可以构建多个步骤来进行更复杂的排序,例如对student数据先以grade降序排列,然后再以age升序排列。

>>> s = sorted(student_objects, key=attrgetter( ' age '))      #  sort on secondary key
>>> sorted(s, key=attrgetter( ' grade '), reverse=True)        #  now sort on primary key, descending
[( ' dave '' B ', 10), ( ' jane '' B ', 12), ( ' john '' A ', 15)]

 

6)最老土的排序方法-DSU
我们称其为DSU(Decorate-Sort-Undecorate),原因为排序的过程需要下列三步:
第一:对原始的list进行装饰,使得新list的值可以用来控制排序;
第二:对装饰后的list排序;
第三:将装饰删除,将排序后的装饰list重新构建为原来类型的list;

 

例如,使用DSU方法来对student数据根据grade排序:
>>> decorated = [(student.grade, i, student)  for i, student  in enumerate(student_objects)]
>>> decorated.sort()
>>> [student  for grade, i, student  in decorated]                #  undecorate
[( ' john '' A ', 15), ( ' jane '' B ', 12), ( ' dave '' B ', 10)]
上面的比较能够工作,原因是tuples是可以用来比较,tuples间的比较首先比较tuples的第一个元素,如果第一个相同再比较第二个元素,以此类推。

 

并不是所有的情况下都需要在以上的tuples中包含索引,但是包含索引可以有以下好处:
第一:排序是稳定的,如果两个元素有相同的key,则他们的原始先后顺序保持不变;
第二:原始的元素不必用来做比较,因为tuples的第一和第二元素用来比较已经是足够了。

 

此方法被RandalL.在perl中广泛推广后,他的另一个名字为也被称为Schwartzian transform。

 

对大的list或list的元素计算起来太过复杂的情况下,在python2.4前,DSU很可能是最快的排序方法。但是在2.4之后,上面解释的key函数提供了类似的功能。

 

7)其他语言普遍使用的排序方法-cmp函数
在python2.4前,sorted()和list.sort()函数没有提供key参数,但是提供了cmp参数来让用户指定比较函数。此方法在其他语言中也普遍存在。

 

在python3.0中,cmp参数被彻底的移除了,从而简化和统一语言,减少了高级比较和__cmp__方法的冲突。

 

在python2.x中cmp参数指定的函数用来进行元素间的比较。此函数需要2个参数,然后返回负数表示小于,0表示等于,正数表示大于。例如:
>>>  def numeric_compare(x, y):
         return x - y
>>> sorted([5, 2, 4, 1, 3], cmp=numeric_compare)
[1, 2, 3, 4, 5]
 

或者你可以反序排序:

>>>  def reverse_numeric(x, y):
         return y - x
>>> sorted([5, 2, 4, 1, 3], cmp=reverse_numeric)
[5, 4, 3, 2, 1]
 

当我们将现有的2.x的代码移植到3.x时,需要将cmp函数转化为key函数,以下的wrapper很有帮助:

def cmp_to_key(mycmp):
     ' Convert a cmp= function into a key= function '
     class K(object):
         def  __init__(self, obj, *args):
            self.obj = obj
         def  __lt__(self, other):
             return mycmp(self.obj, other.obj) < 0
         def  __gt__(self, other):
             return mycmp(self.obj, other.obj) > 0
         def  __eq__(self, other):
             return mycmp(self.obj, other.obj) == 0
         def  __le__(self, other):
             return mycmp(self.obj, other.obj) <= 0
         def  __ge__(self, other):
             return mycmp(self.obj, other.obj) >= 0
         def  __ne__(self, other):
             return mycmp(self.obj, other.obj) != 0
     return K
 

当需要将cmp转化为key时,只需要:

>>> sorted([5, 2, 4, 1, 3], key=cmp_to_key(reverse_numeric))
[5, 4, 3, 2, 1]

从python2.7,cmp_to_key()函数被增加到了functools模块中。 


8)其他注意事项
* 对需要进行区域相关的排序时,可以使用locale.strxfrm()作为key函数,或者使用local.strcoll()作为cmp函数。

 

* reverse参数任然保持了排序的稳定性,有趣的时,同样的效果可以使用reversed()函数两次来实现:
>>> data = [( ' red ', 1), ( ' blue ', 1), ( ' red ', 2), ( ' blue ', 2)]
>>>  assert sorted(data, reverse=True) == list(reversed(sorted(reversed(data))))
 

* 其实排序在内部是调用元素的__cmp__来进行的,所以我们可以为元素类型增加__cmp__方法使得元素可比较,例如:

>>> Student. __lt__ =  lambda self, other: self.age < other.age
>>> sorted(student_objects)
[( ' dave '' B ', 10), ( ' jane '' B ', 12), ( ' john '' A ', 15)]
 

* key函数不仅可以访问需要排序元素的内部数据,还可以访问外部的资源,例如,如果学生的成绩是存储在dictionary中的,则可以使用此dictionary来对学生名字的list排序,如下:

>>> students = [ ' dave '' john '' jane ']
>>> newgrades = { ' john '' F '' jane ': ' A '' dave '' C '}
>>> sorted(students, key=newgrades. __getitem__)
[ ' jane '' dave '' john ']

 

*当你需要在处理数据的同时进行排序的话,sort(),sorted()或bisect.insort()不是最好的方法。在这种情况下,可以使用heap,red-black tree或treap。

 

 

完! 

 

你可能感兴趣的:(python)