如何衡量两个词的相关度

在信息论中常用互信息(MI,Mutual Information)来衡量两个词的相关度MI(X,Y)=log2p(x,y)/p(x)p(y)
MI越大,表示两个词之间的结合越紧密。
当X,Y关联大时,MI(X,Y)大于0;当X与Y关系弱时,MI(X,Y)等于0;当MI(X,Y)小于0时,X与Y称为“互补关系”

这个算式看起来很直观,但计算还是有些麻烦,因为计算概率值p(x),p(y)都需要在语料中进行分词,
这就涉及到词典的构成以及分词的算法。
下面介绍一个简便而直观的算法:
假设一个文章集合 {C},总文章数目为N,其中含有单词X的文章总数为Nx,含有单词Y的文章总数是Ny,含有{X+Y}的文章总数是 Nxy,那么相关性这么计算
Corr(X,Y)= Nxy/(Nx+Ny-Nxy)-(Nx*Ny)/(N*N)

Technorati 标记:

你可能感兴趣的:(如何衡量两个词的相关度)