探索底层的准备工作
你需要一份可编辑的objc4-781源码,传送地址:objc4-781源码 或者Cooci-objc4_debug
当然你也可以自己弄一份,参考文章 objc4-781 源码编译 & 调试
alloc的底层调用
1. alloc
会调用_objc_rootAlloc
+ (id)alloc {
return _objc_rootAlloc(self);
}
2._objc_rootAlloc
会调用callAlloc(cls, false, true)
;
id _objc_rootAlloc(Class cls)
{
return callAlloc(cls, false/*checkNil*/, true/*allocWithZone*/);
}
3.预编译阶段,fastpath()
告诉编译器大概率会执行下面的过程,即:_objc_rootAllocWithZone(cls, nil)
static ALWAYS_INLINE id callAlloc(Class cls, bool checkNil, bool allocWithZone=false)
{
#if __OBJC2__
if (slowpath(checkNil && !cls)) return nil;
if (fastpath(!cls->ISA()->hasCustomAWZ())) {
return _objc_rootAllocWithZone(cls, nil);
}
#endif
// No shortcuts available.
if (allocWithZone) {
return ((id(*)(id, SEL, struct _NSZone *))objc_msgSend)(cls, @selector(allocWithZone:), nil);
}
return ((id(*)(id, SEL))objc_msgSend)(cls, @selector(alloc));
}
4.接下来执行_class_createInstanceFromZone(cls, 0, nil,OBJECT_CONSTRUCT_CALL_BADALLOC)
id _objc_rootAllocWithZone(Class cls, malloc_zone_t *zone __unused)
{
// allocWithZone under __OBJC2__ ignores the zone parameter
return _class_createInstanceFromZone(cls, 0, nil,
OBJECT_CONSTRUCT_CALL_BADALLOC);
}
5._class_createInstanceFromZone
这里是具体干的事情
1.需要开辟多少空间
size = cls->instanceSize(extraBytes);
2.申请内存空间obj = (id)calloc(1, size)
3.创建isa
指针并与自身关联obj->initInstanceIsa(cls, hasCxxDtor);
4.返回指向该段内存地址的指针if (fastpath(!hasCxxCtor)) {return obj;}
static ALWAYS_INLINE id _class_createInstanceFromZone(Class cls, size_t extraBytes, void *zone,
int construct_flags = OBJECT_CONSTRUCT_NONE,
bool cxxConstruct = true,
size_t *outAllocatedSize = nil)
{
ASSERT(cls->isRealized());
// Read class's info bits all at once for performance
bool hasCxxCtor = cxxConstruct && cls->hasCxxCtor();
bool hasCxxDtor = cls->hasCxxDtor();
bool fast = cls->canAllocNonpointer();
size_t size;
// 1:要开辟多少内存
size = cls->instanceSize(extraBytes);
if (outAllocatedSize) *outAllocatedSize = size;
id obj;
if (zone) {
obj = (id)malloc_zone_calloc((malloc_zone_t *)zone, 1, size);
} else {
// 2;怎么去申请内存
obj = (id)calloc(1, size);
}
if (slowpath(!obj)) {
if (construct_flags & OBJECT_CONSTRUCT_CALL_BADALLOC) {
return _objc_callBadAllocHandler(cls);
}
return nil;
}
// 3: 将这段内存空间与isa关联
if (!zone && fast) {
obj->initInstanceIsa(cls, hasCxxDtor);
} else {
// Use raw pointer isa on the assumption that they might be
// doing something weird with the zone or RR.
obj->initIsa(cls);
}
// 4: 返回指向该段内存地址的指针
if (fastpath(!hasCxxCtor)) {
return obj;
}
construct_flags |= OBJECT_CONSTRUCT_FREE_ONFAILURE;
return object_cxxConstructFromClass(obj, cls, construct_flags);
}
alloc流程图
init底层调用
返回
self
+ (id)init {
return (id)self;
}
new的底层调用
1.
[callAlloc(self, false) init]
其实就是[[XXX alloc]init]
2. 但是一般开发中并不建议使用new,主要是因为有时会重写init方法做一些自定义的操作,用new初始化无法走到重写init的自定义的部分,因为new是直接调用底层的C函数去实现的。
+ (id)new {
return [callAlloc(self, false/*checkNil*/) init];
}
面试题
1.分析以下代打印的结果
LGPerson *p1 = [LGPerson alloc];
LGPerson *p2 = [p1 init];
LGPerson *p3 = [p1 init];
LGNSLog(@"%@ - %p - %p",p1,p1,&p1);
NSLog(@"%@ - %p - %p",p2,p2,&p2);
NSLog(@"%@ - %p - %p",p3,p3,&p3);
打印的结果:
分析:
1.首先p1=p2=p3 ,是同一个对象,占据同一段内存空间,所依打印出来的地址相同
2. &p1 &p2 &p3 但是指向同一段内存空间的指针是不同的,所以 &p1 &p2 &p3不同
2.一个OC对象,至少占用多少内存空间?
回答这个问题,我们需要回到alloc的流程,看看cls->instanceSize(extraBytes)
具体算法实现。
size_t instanceSize(size_t extraBytes) const {
if (fastpath(cache.hasFastInstanceSize(extraBytes))) {
return cache.fastInstanceSize(extraBytes);
}
size_t size = alignedInstanceSize() + extraBytes;
// CF requires all objects be at least 16 bytes.
if (size < 16) size = 16;
return size;
}
size_t fastInstanceSize(size_t extra) const
{
ASSERT(hasFastInstanceSize(extra));
if (__builtin_constant_p(extra) && extra == 0) {
return _flags & FAST_CACHE_ALLOC_MASK16;
} else {
size_t size = _flags & FAST_CACHE_ALLOC_MASK;
// remove the FAST_CACHE_ALLOC_DELTA16 that was added
// by setFastInstanceSize
return align16(size + extra - FAST_CACHE_ALLOC_DELTA16);
}
}
static inline size_t align16(size_t x) {
return (x + size_t(15)) & ~size_t(15);
}
1.最终追溯到
align16(size_t x)
,16位对齐,我们把x=8代入,return 16
2.所以一个OC对象至少占用16byte的内存空间。
为什么需要16字节对齐?
1. 通常内存是由一个个字节组成的,cpu在存取数据时,并不是以字节为单位存储,而是以块为单位存取,块的大小为内存存取力度。频繁存取字节未对齐的数据,会极大降低cpu的性能,所以可以通过减少存取次数来降低cpu的开销
2.由于在一个对象中,第一个属性isa占8字节,当然一个对象肯定还有其他属性,当无属性时,会预留8字节,即16字节对齐,如果不预留,相当于这个对象的isa和其他对象的isa紧挨着,容易造成访问混乱
3.可以加快CPU读取速度,同时使访问更安全,不会产生访问混乱的情况。
验证:
#import
#import
// 获取实际分配内存大小,最终分配的大小,16 字节
NSObject *obj = [[NSObject alloc]init];
LGPerson *p4 = [[LGPerson alloc]init];
NSString *name = @"guanhua";
size_t mSize = malloc_size((__bridge const void *)obj);
LGNSLog(@"mSize malloc Size:%zd",mSize);
size_t p4Size = malloc_size((__bridge const void *)p4);
LGNSLog(@"p4Size malloc Size:%zd",p4Size);
打印结果: