- 稀土化合物的分类
DeepCeLa
稀土科技稀土氧化物稀土化合物
稀土化合物是由稀土元素(如镧系元素及钇、铈等)与其他元素组成的化学物质,因其独特的光、电、磁性能,在多个高科技和民用领域中发挥重要作用。根据其组成和用途,稀土化合物主要分为以下几类:1.稀土氧化物:如氧化铈、氧化镧、氧化钕、氧化钇、氧化镨等,广泛应用于冶金、陶瓷、电子和催化领域。2.稀土氯化物:如氯化铈、氯化镧(、氯化钕、氯化钇等,通常呈白色或无色结晶,用于催化和光电材料。3.稀土硫化物:硫化铈、
- 强化学习之 DQN、Double DQN、PPO
JNU freshman
强化学习强化学习
文章目录通俗理解DQNDoubleDQNPPO结合公式理解通俗理解DQN一个简单的比喻和分步解释来理解DQN(DeepQ-Network,深度Q网络),就像教小朋友学打游戏一样:先理解基础概念:Q学习(Q-Learning)想象你在教一只小狗玩电子游戏(比如打砖块)。小狗每做一个动作(比如“向左移动”或“发射球”),游戏会给出一个奖励(比如得分增加)或惩罚(比如球掉了)。小狗的目标是通过不断尝试,
- Python 强化学习算法实用指南(三)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/e3819a6747796b03b9288831f4e2b00c译者:飞龙协议:CCBY-NC-SA4.0第十一章:理解黑盒优化算法在前几章中,我们研究了强化学习(RL)算法,从基于价值的方法到基于策略的方法,以及从无模型方法到基于模型的方法。在本章中,我们将提供另一种解决序列任务的方法,那就是使用一类黑盒算法——进化算法(EA)。EAs由进化机制
- Python 强化学习算法实用指南(二)
原文:annas-archive.org/md5/e3819a6747796b03b9288831f4e2b00c译者:飞龙协议:CCBY-NC-SA4.0第六章:学习随机优化与PG优化到目前为止,我们已经探讨并开发了基于价值的强化学习算法。这些算法通过学习一个价值函数来找到一个好的策略。尽管它们表现良好,但它们的应用受限于一些内在的限制。在本章中,我们将介绍一类新的算法——策略梯度方法,它们通过
- 【HTML网页】美妆梦工厂 - 打造你的美丽梦想(设计化妆品小店的官方网页,包含网页源代码)
敲代码的苦13
HTML网页源代码HTMLhtml前端
美妆梦工厂-打造你的美丽梦想网页内容:色彩搭配:使用粉色或紫色作为主色调,以营造温馨浪漫的氛围,吸引女性顾客。注意色彩的心理效应,比如红色能激发购买欲望,蓝色给人以信任感。布局规划:确保首页的导航栏清晰明了,分类明确。商品展示区要突出重点,可以设置轮播图展示主打产品或促销活动。详细的商品描述、高清大图、用户评价等是提高转化率的关键因素。在页面底部加上联系方式和服务承诺,增加顾客的信任感。个性化元素
- 量子化学仿真软件:NWChem_(12).并行计算技术
kkchenjj
化工仿真2化工仿真模拟化工仿真
并行计算技术并行计算技术在量子化学仿真软件中扮演着至关重要的角色。随着计算化学任务的复杂度和数据规模的不断增长,传统的单核计算已经无法满足高性能计算的需求。并行计算通过利用多个处理器或计算节点来分担计算任务,可以在显著减少计算时间的同时提高计算效率。在NWChem中,支持多种并行计算模式,包括共享内存并行(OpenMP)、分布式内存并行(MPI)以及混合并行(OpenMP+MPI)。本节将详细介绍
- 量子化学仿真软件:ORCA_(7).密度泛函理论DFT计算
kkchenjj
化工仿真2化工仿真模拟算法人工智能机器学习化工仿真
密度泛函理论DFT计算密度泛函理论(DensityFunctionalTheory,DFT)是量子化学中一种重要的方法,用于研究多电子系统的电子结构。DFT通过将电子密度作为基本变量,而不是波函数,大大简化了多电子系统的计算复杂度。在ORCA中,DFT计算是常用的计算方法之一,可以用于优化分子结构、计算电子密度、能级、振动频率等。1.基本概念1.1电子密度电子密度定义为单位体积内的电子数。在DFT
- 【论文阅读】AdaCtrl: Towards Adaptive and Controllable Reasoning via Difficulty-Aware Budgeting
quintus0505
LLM论文阅读语言模型
AdaCtrl:TowardsAdaptiveandControllableReasoningviaDifficulty-AwareBudgeting3Method3.1长度触发标签作为控制接口(Length-TriggerTagsasControllingInterface)3.2冷启动微调(Cold-startfine-tuning)3.3难度感知的强化学习框架(Difficulty-awar
- 【论文笔记ing】Pointerformer: Deep Reinforced Multi-Pointer Transformer for the Traveling Salesman Problem
Booksort
online笔记论文论文阅读transformer深度学习
论文中使用一个PointerFormer模型编码器部分:可逆残差模型堆叠解码器部分:指针网络自回归对于一次任务而言,推理阶段:编码器部分:一次解码器部分:循环N次,直至任务结束在训练阶段,使用强化学习,对于一个N个节点的TSP实例,算法中会以不同的起点,跑N次,得到N个轨迹,以满足TSP的对称特性,表示这都是属于一个TSP问题的(真实)解然后会计算这样表示归一化奖励,得到一个advantage,然
- 四、Actor-Critic Methods
沈夢昂志
DRL深度强化学习python深度学习
由于在看DRL论文中,很多公式都很难理解。因此最近在学习DRL的基本内容。再此说明,非常推荐B站“王树森老师的DRL强化学习”本文的图表及内容,都是基于王老师课程的后自行理解整理出的内容。目录A.书接上回1、Reinforce算法B.State-ValueFunctionC.PolicyNetWork(Actor)D.ActionValueNetwork(Critic)E.TraintheNeur
- AI驱动的个人工作革命:基于DeepSeek构建全场景智能工作助理(含源代码+多应用场景)
AI_DL_CODE
DeepSeek深度应用人工智能DeepSeek个人智能助理LangChain任务自动化知识管理大模型应用
摘要:本文详细阐述基于DeepSeek大模型构建个人工作助理的完整技术方案,通过LangChain实现任务分解、知识检索与工具调用的智能协同。方案融合向量数据库、多模态交互与个性化学习算法,构建涵盖邮件处理、会议管理、文档生成等15大核心工作场景的自动化系统。文中提供可运行代码、完整部署指南及效能测试数据,实现邮件处理效率提升13倍、会议纪要生成时间缩短100%、任务安排错误率降低83%的显著优化
- 语言模型 RLHF 实践指南(一):策略网络、价值网络与 PPO 损失函数
在使用ProximalPolicyOptimization(PPO)对语言模型进行强化学习微调(如RLHF)时,大家经常会问:策略网络的动作概率是怎么来的?价值网络的得分是如何计算的?奖励从哪里来?损失函数怎么构建?微调后的旧轨迹还能用吗?这篇文章将以语言模型强化学习微调为例,结合实际实现和数学公式,深入解析PPO的关键计算流程。1️⃣策略网络:如何计算动作概率?策略网络πθ(a∣s)\pi_\t
- 前端面试专栏-算法篇:20. 贪心算法与动态规划入门
欢迎来到前端面试通关指南专栏!从js精讲到框架到实战,渐进系统化学习,坚持解锁新技能,祝你轻松拿下心仪offer。前端面试通关指南专栏主页前端面试专栏规划详情贪心算法与动态规划入门在计算机科学领域,算法是解决问题的核心工具。而贪心算法与动态规划作为两种重要的算法设计策略,广泛应用于优化问题中。本文将深入浅出地介绍这两种算法的基本概念、适用场景、实现方法,并通过经典案例帮助读者理解和掌握它们的核心思
- 超材料设计破局!Meta AI 等提出 UNIMATE,首次实现拓扑生成/性能预测等任务的统一建模
hyperai
超材料是一类由人工设计的亚波长结构组成的材料,能够突破天然材料的固有限制,实现对电磁波的精确调控,如负折射率、超透镜、隐身技术等。其中,机械超材料作为一类拥有特殊力学性能的人造材料,在航空航天、生物医药、能源存储等多个领域展现出巨大的应用潜力。其独特之处在于性能并非由材料的化学成分决定,而是通过精心设计的微观结构来实现。例如,具有负泊松比的超材料在拉伸时会横向膨胀,这种特性使其在柔性器件中具有重要
- 智能体核心架构解析:感知-推理-行动的完整闭环
.摘星.
AI智能体人工智能智能体架构感知系统推理算法行动控制
智能体核心架构解析:感知-推理-行动的完整闭环嗨,我是IRpickstars!总有一行代码,能点亮万千星辰。在技术的宇宙中,我愿做永不停歇的探索者。✨用代码丈量世界,用算法解码未来。我是摘星人,也是造梦者。每一次编译都是新的征程,每一个bug都是未解的谜题。让我们携手,在0和1的星河中,书写属于开发者的浪漫诗篇。目录智能体核心架构解析:感知-推理-行动的完整闭环摘要1.智能体整体架构概览1.1架构
- 量子化学仿真软件:NWChem_(7).分子动力学模拟
kkchenjj
化工仿真2化工仿真模拟人工智能化工仿真
分子动力学模拟分子动力学(MolecularDynamics,MD)模拟是量子化学和材料科学中常用的一种计算方法,用于研究分子系统在不同时间和空间尺度下的行为。通过MD模拟,可以观察分子的运动轨迹、能量变化、温度和压力等物理性质,从而深入了解分子间的相互作用和系统的动力学性质。在NWChem中,MD模拟可以通过多种方法实现,包括经典MD和量子MD。本节将详细介绍如何在NWChem中进行分子动力学模
- 一文就够-InfiniBand 技术全面解析:从原理到实践的通俗易懂指南
清风 001
AI大模型底层建设php开发语言aigpu算力
目录一、基本概念:揭开InfiniBand的神秘面纱1.1什么是InfiniBand?1.2InfiniBand的核心优势1.3InfiniBand与以太网的区别1.4InfiniBand的应用场景二、Nvidia+Mellanox:强强联合重塑高速网络格局2.1收购背景:Nvidia的"网络拼图"2.2Mellanox的技术家底2.3收购后的化学反应:Nvidia如何整合Mellanox2.4对
- Python 爬虫实战:爬取网易公开课(课程列表解析 + 视频资源批量下载)
Python核芯
Python爬虫实战项目python爬虫音视频网易
一、引言在数字化学习蓬勃发展的当下,网易公开课作为优质在线教育平台,汇聚了海量精品课程,涵盖科技、文化、艺术等多元领域,为求知者提供了便捷的学习渠道。然而,面对丰富的内容,手动逐一浏览、下载课程视频既耗时又低效,尤其对于想要系统学习特定领域知识的用户而言,亟需更高效的解决方案。Python爬虫技术凭借其强大的自动化数据获取能力,可轻松应对这一挑战,实现网易公开课课程列表的精准解析与视频资源的批量下
- 集成学习中的多样性密码:量化学习器的多样性
元楼
集成学习学习机器学习人工智能
合集-scikit-learn(69)1.【scikit-learn基础】--概述2023-12-022.【scikit-learn基础】--『数据加载』之玩具数据集2023-12-043.【scikit-learn基础】--『数据加载』之真实数据集2023-12-064.【scikit-learn基础】--『数据加载』之样本生成器2023-12-085.【scikit-learn基础】--『数据
- 【零基础学AI】第33讲:强化学习基础 - 游戏AI智能体
1989
0基础学AI人工智能游戏transformer分类深度学习神经网络
本节课你将学到理解强化学习的基本概念和框架掌握Q-learning算法原理使用Python实现贪吃蛇游戏AI训练能够自主玩游戏的智能体开始之前环境要求Python3.8+PyTorch2.0+Gymnasium(原OpenAIGym)NumPyMatplotlib推荐使用JupyterNotebook进行实验前置知识Python基础编程(第1-8讲)基本数学概念(函数、导数)神经网络基础(第23讲
- 在Carla上应用深度强化学习实现自动驾驶(一)
寒霜似karry
自动驾驶人工智能机器学习
carla环境下基于强化学习的自动驾驶_哔哩哔哩_bilibili本篇文章是小编在pycharm上自己手敲代码学习自动驾驶的第一篇文章,主要讲述如何在Carla中控制我们自己生成的汽车并且使用rgb摄像头传感器获取图像数据。以下代码参考自:(如有侵权,请联系我将立即删除)使用Carla和Python的自动驾驶汽车第2部分——控制汽车并获取传感器数据-CSDN博客1、导入carla(其中的路径根据自
- 【AI论文】Skywork-Reward-V2:通过人机协同实现偏好数据整理的规模化扩展
摘要:尽管奖励模型(RewardModels,RMs)在基于人类反馈的强化学习(ReinforcementLearningfromHumanFeedback,RLHF)中发挥着关键作用,但当前最先进的开源奖励模型在大多数现有评估基准上表现欠佳,无法捕捉人类复杂且微妙的偏好谱系。即便采用先进训练技术的方法也未能显著提升性能。我们推测,这种脆弱性主要源于偏好数据集的局限性——这些数据集往往范围狭窄、标
- 从UI设计到数字孪生实战:构建智慧教育的个性化学习平台
hello宝子们...我们是艾斯视觉擅长ui设计、前端开发、数字孪生、大数据、三维建模、三维动画10年+经验!希望我的分享能帮助到您!如需帮助可以评论关注私信我们一起探讨!致敬感谢感恩!一、引言:数字孪生重构智慧教育的技术范式在教育数字化转型加速推进的背景下,传统在线教育正面临"个性化不足、学习体验单一、效果评估滞后"的瓶颈。教育部数据显示,采用数字孪生技术的智慧教育平台,学生学习效率平均提升35
- 如何在平台中设置不同权限(合成化学师、材料专家、数据工程师)协同工作
百态老人
java开发语言
一、权限管理模型设计:RBAC-ABAC混合架构为实现合成化学师、材料专家和数据工程师的高效协作,需采用基于角色的访问控制(RBAC)结合基于属性的访问控制(ABAC)的混合模型(Ev7-14,Ev36)。该模型兼顾角色职责的清晰划分与动态场景的灵活适配:RBAC基础框架:为三类角色定义核心权限集(Ev13):合成化学师:实验数据录入、工艺路线修改、报告撰写(Ev1)。材料专家:样品测试分析、工艺
- 【AI大模型】神经网络反向传播:核心原理与完整实现
我爱一条柴ya
学习AI记录人工智能神经网络深度学习aiAI编程
一、反向传播的本质与意义反向传播(Backpropagation)是神经网络训练的核心算法,通过链式法则高效计算损失函数对网络参数的梯度,实现神经网络的优化学习。它的出现解决了神经网络训练中的关键瓶颈,使深度学习成为可能。为什么需要反向传播?参数规模爆炸:现代神经网络有数百万至数十亿参数手动计算不可行:复杂网络梯度计算量指数级增长高效优化需求:梯度下降算法需要精确的梯度计算二、前向传播与反向传播对
- 基于YOLOv8深度学习架构的智能农业巡检小车系统—面向农作物与杂草实时精准识别的创新实践
1.科技赋能智慧农业随着全球人口的持续增长和农业生产面临的挑战,精准农业已成为现代农业发展的必然趋势。其中,农作物与杂草的精准识别是实现自动化、智能化管理的关键一环。传统的人工除草效率低下,化学除草则可能带来环境问题。因此,开发高效、精准、环保的智能农业系统迫在眉睫。本文将深入探讨一款基于深度学习和智能硬件集成的农田作业智能小车系统。我们将重点聚焦于其硬件系统设计、软件系统架构、核心算法创新(特别
- 多智能体深度强化学习:一项综述 Multi-agent deep reinforcement learning: a survey
资源存储库
笔记
Abstract抽象Theadvancesinreinforcementlearninghaverecordedsublimesuccessinvariousdomains.Althoughthemulti-agentdomainhasbeenovershadowedbyitssingle-agentcounterpartduringthisprogress,multi-agentreinforc
- r语言改变数据框列名_数据决定离线强化学习将如何改变我们的语言习惯
杨_明
python大数据人工智能java机器学习
r语言改变数据框列名重点(Tophighlight)Aridesharingcompanycollectsadatasetofpricinganddiscountdecisionswithcorrespondingchangesincustomeranddriverbehavior,inordertooptimizeadynamicpricingstrategy.Anonlinevendorrec
- ReAct (Reason and Act) OR 强化学习(Reinforcement Learning, RL)
SugarPPig
人工智能人工智能
这个问题触及了现代AI智能体(Agent)构建的两种核心思想。简单来说,ReAct是一种“调用专家”的模式,而强化学习(RL)是一种“从零试错”的模式。为了让你更清晰地理解,我们从一个生动的比喻开始,然后进行详细的对比。一个生动的比喻想象一下你要完成一项复杂的任务,比如“策划一场完美的生日派对”。ReAct的方式(像一位经验丰富的活动策划师)你是一位知识渊博的专家(大语言模型LLM)。你首先会思考
- 【AI论文】GLM-4.1V-思考:借助可扩展强化学习实现通用多模态推理
东临碣石82
人工智能
摘要:我们推出GLM-4.1V-Thinking这一视觉语言模型(VLM),该模型旨在推动通用多模态推理的发展。在本报告中,我们分享了在以推理为核心的训练框架开发过程中的关键发现。我们首先通过大规模预训练开发了一个具备显著潜力的高性能视觉基础模型,可以说该模型为最终性能设定了上限。随后,借助课程采样强化学习(ReinforcementLearningwithCurriculumSampling,R
- linux系统服务器下jsp传参数乱码
3213213333332132
javajsplinuxwindowsxml
在一次解决乱码问题中, 发现jsp在windows下用js原生的方法进行编码没有问题,但是到了linux下就有问题, escape,encodeURI,encodeURIComponent等都解决不了问题
但是我想了下既然原生的方法不行,我用el标签的方式对中文参数进行加密解密总该可以吧。于是用了java的java.net.URLDecoder,结果还是乱码,最后在绝望之际,用了下面的方法解决了
- Spring 注解区别以及应用
BlueSkator
spring
1. @Autowired
@Autowired是根据类型进行自动装配的。如果当Spring上下文中存在不止一个UserDao类型的bean,或者不存在UserDao类型的bean,会抛出 BeanCreationException异常,这时可以通过在该属性上再加一个@Qualifier注解来声明唯一的id解决问题。
2. @Qualifier
当spring中存在至少一个匹
- printf和sprintf的应用
dcj3sjt126com
PHPsprintfprintf
<?php
printf('b: %b <br>c: %c <br>d: %d <bf>f: %f', 80,80, 80, 80);
echo '<br />';
printf('%0.2f <br>%+d <br>%0.2f <br>', 8, 8, 1235.456);
printf('th
- config.getInitParameter
171815164
parameter
web.xml
<servlet>
<servlet-name>servlet1</servlet-name>
<jsp-file>/index.jsp</jsp-file>
<init-param>
<param-name>str</param-name>
- Ant标签详解--基础操作
g21121
ant
Ant的一些核心概念:
build.xml:构建文件是以XML 文件来描述的,默认构建文件名为build.xml。 project:每个构建文
- [简单]代码片段_数据合并
53873039oycg
代码
合并规则:删除家长phone为空的记录,若一个家长对应多个孩子,保留一条家长记录,家长id修改为phone,对应关系也要修改。
代码如下:
- java 通信技术
云端月影
Java 远程通信技术
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来
- string与StringBuilder 性能差距到底有多大
aijuans
之前也看过一些对string与StringBuilder的性能分析,总感觉这个应该对整体性能不会产生多大的影响,所以就一直没有关注这块!
由于学程序初期最先接触的string拼接,所以就一直没改变过自己的习惯!
- 今天碰到 java.util.ConcurrentModificationException 异常
antonyup_2006
java多线程工作IBM
今天改bug,其中有个实现是要对map进行循环,然后有删除操作,代码如下:
Iterator<ListItem> iter = ItemMap.keySet.iterator();
while(iter.hasNext()){
ListItem it = iter.next();
//...一些逻辑操作
ItemMap.remove(it);
}
结果运行报Con
- PL/SQL的类型和JDBC操作数据库
百合不是茶
PL/SQL表标量类型游标PL/SQL记录
PL/SQL的标量类型:
字符,数字,时间,布尔,%type五中类型的
--标量:数据库中预定义类型的变量
--定义一个变长字符串
v_ename varchar2(10);
--定义一个小数,范围 -9999.99~9999.99
v_sal number(6,2);
--定义一个小数并给一个初始值为5.4 :=是pl/sql的赋值号
- Mockito:一个强大的用于 Java 开发的模拟测试框架实例
bijian1013
mockito单元测试
Mockito框架:
Mockito是一个基于MIT协议的开源java测试框架。 Mockito区别于其他模拟框架的地方主要是允许开发者在没有建立“预期”时验证被测系统的行为。对于mock对象的一个评价是测试系统的测
- 精通Oracle10编程SQL(10)处理例外
bijian1013
oracle数据库plsql
/*
*处理例外
*/
--例外简介
--处理例外-传递例外
declare
v_ename emp.ename%TYPE;
begin
SELECT ename INTO v_ename FROM emp
where empno=&no;
dbms_output.put_line('雇员名:'||v_ename);
exceptio
- 【Java】Java执行远程机器上Linux命令
bit1129
linux命令
Java使用ethz通过ssh2执行远程机器Linux上命令,
封装定义Linux机器的环境信息
package com.tom;
import java.io.File;
public class Env {
private String hostaddr; //Linux机器的IP地址
private Integer po
- java通信之Socket通信基础
白糖_
javasocket网络协议
正处于网络环境下的两个程序,它们之间通过一个交互的连接来实现数据通信。每一个连接的通信端叫做一个Socket。一个完整的Socket通信程序应该包含以下几个步骤:
①创建Socket;
②打开连接到Socket的输入输出流;
④按照一定的协议对Socket进行读写操作;
④关闭Socket。
Socket通信分两部分:服务器端和客户端。服务器端必须优先启动,然后等待soc
- angular.bind
boyitech
AngularJSangular.bindAngularJS APIbind
angular.bind 描述: 上下文,函数以及参数动态绑定,返回值为绑定之后的函数. 其中args是可选的动态参数,self在fn中使用this调用。 使用方法: angular.bind(se
- java-13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class KickOutBadGuys {
/**
* 题目:13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
* Maybe you can find out
- Redis.conf配置文件及相关项说明(自查备用)
Kai_Ge
redis
Redis.conf配置文件及相关项说明
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
- [强人工智能]实现大规模拓扑分析是实现强人工智能的前奏
comsci
人工智能
真不好意思,各位朋友...博客再次更新...
节点数量太少,网络的分析和处理能力肯定不足,在面对机器人控制的需求方面,显得力不从心....
但是,节点数太多,对拓扑数据处理的要求又很高,设计目标也很高,实现起来难度颇大...
- 记录一些常用的函数
dai_lm
java
public static String convertInputStreamToString(InputStream is) {
StringBuilder result = new StringBuilder();
if (is != null)
try {
InputStreamReader inputReader = new InputStreamRead
- Hadoop中小规模集群的并行计算缺陷
datamachine
mapreducehadoop并行计算
注:写这篇文章的初衷是因为Hadoop炒得有点太热,很多用户现有数据规模并不适用于Hadoop,但迫于扩容压力和去IOE(Hadoop的廉价扩展的确非常有吸引力)而尝试。尝试永远是件正确的事儿,但有时候不用太突进,可以调优或调需求,发挥现有系统的最大效用为上策。
-----------------------------------------------------------------
- 小学4年级英语单词背诵第二课
dcj3sjt126com
englishword
egg 蛋
twenty 二十
any 任何
well 健康的,好
twelve 十二
farm 农场
every 每一个
back 向后,回
fast 快速的
whose 谁的
much 许多
flower 花
watch 手表
very 非常,很
sport 运动
Chinese 中国的
- 自己实践了github的webhooks, linux上面的权限需要注意
dcj3sjt126com
githubwebhook
环境, 阿里云服务器
1. 本地创建项目, push到github服务器上面
2. 生成www用户的密钥
sudo -u www ssh-keygen -t rsa -C "
[email protected]"
3. 将密钥添加到github帐号的SSH_KEYS里面
3. 用www用户执行克隆, 源使
- Java冒泡排序
蕃薯耀
冒泡排序Java冒泡排序Java排序
冒泡排序
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 10:40:14 星期二
http://fanshuyao.iteye.com/
- Excle读取数据转换为实体List【基于apache-poi】
hanqunfeng
apache
1.依赖apache-poi
2.支持xls和xlsx
3.支持按属性名称绑定数据值
4.支持从指定行、列开始读取
5.支持同时读取多个sheet
6.具体使用方式参见org.cpframework.utils.excelreader.CP_ExcelReaderUtilTest.java
比如:
Str
- 3个处于草稿阶段的Javascript API介绍
jackyrong
JavaScript
原文:
http://www.sitepoint.com/3-new-javascript-apis-may-want-follow/?utm_source=html5weekly&utm_medium=email
本文中,介绍3个仍然处于草稿阶段,但应该值得关注的Javascript API.
1) Web Alarm API
&
- 6个创建Web应用程序的高效PHP框架
lampcy
Web框架PHP
以下是创建Web应用程序的PHP框架,有coder bay网站整理推荐:
1. CakePHP
CakePHP是一个PHP快速开发框架,它提供了一个用于开发、维护和部署应用程序的可扩展体系。CakePHP使用了众所周知的设计模式,如MVC和ORM,降低了开发成本,并减少了开发人员写代码的工作量。
2. CodeIgniter
CodeIgniter是一个非常小且功能强大的PHP框架,适合需
- 评"救市后中国股市新乱象泛起"谣言
nannan408
首先来看百度百家一位易姓作者的新闻:
三个多星期来股市持续暴跌,跌得投资者及上市公司都处于极度的恐慌和焦虑中,都要寻找自保及规避风险的方式。面对股市之危机,政府突然进入市场救市,希望以此来重建市场信心,以此来扭转股市持续暴跌的预期。而政府进入市场后,由于市场运作方式发生了巨大变化,投资者及上市公司为了自保及为了应对这种变化,中国股市新的乱象也自然产生。
首先,中国股市这两天
- 页面全屏遮罩的实现 方式
Rainbow702
htmlcss遮罩mask
之前做了一个页面,在点击了某个按钮之后,要求页面出现一个全屏遮罩,一开始使用了position:absolute来实现的。当时因为画面大小是固定的,不可以resize的,所以,没有发现问题。
最近用了同样的做法做了一个遮罩,但是画面是可以进行resize的,所以就发现了一个问题,当画面被reisze到浏览器出现了滚动条的时候,就发现,用absolute 的做法是有问题的。后来改成fixed定位就
- 关于angularjs的点滴
tntxia
AngularJS
angular是一个新兴的JS框架,和以往的框架不同的事,Angularjs更注重于js的建模,管理,同时也提供大量的组件帮助用户组建商业化程序,是一种值得研究的JS框架。
Angularjs使我们可以使用MVC的模式来写JS。Angularjs现在由谷歌来维护。
这里我们来简单的探讨一下它的应用。
首先使用Angularjs我
- Nutz--->>反复新建ioc容器的后果
xiaoxiao1992428
DAOmvcIOCnutz
问题:
public class DaoZ {
public static Dao dao() { // 每当需要使用dao的时候就取一次
Ioc ioc = new NutIoc(new JsonLoader("dao.js"));
return ioc.get(