电路基本原理那些事儿之 欧姆定律

原文链接:https://mp.weixin.qq.com/s/yUmGFBHZJUkpQqV74n6S_w

对于刚毕业的电子类专业大学生而言,虽然已经学了很多的电学知识,但是可能因为缺乏实践的原因,在进入工作岗位以后,碰到实际的问题,却不知道该用哪种知识去解决。因为实际的问题跟课堂上的习题并不一定能一一对应起来,所以一会儿觉得这个方法可以,一会儿又觉得另外一个方法也可行。甚至常常会把简单的问题复杂化,列出了一堆方程式,但是最后发现所有的方法都似乎进行不下去,总是缺点什么,最终造成思维错乱,打击自信心。

<  我们该如何避免陷入这样的困境呢?>

对于很多学科而言,都存在着一些最基本的原理或公式,而这些原理或公式,往往都不会太多,也就是两只手可以数得过来的数量。一旦你掌握了这些基础知识,就可以推导出该领域的其他剩余的原理和公式了。就像小时候我们玩的七巧板一样,只需要七块板,就可以拼出上千种图形。 

当然,你需要的是真正熟悉这些基础知识,而不只是“知道”他们的存在而已。你需要把这些基础知识牢牢记在脑中,不断地去品味他们,使用他们,一直将他们定格于思维中,形成“思维记忆”,就像肌肉记忆一样。

这个电路基本原理系列,我们将会分为四篇文章来分别阐述:

1,欧姆定律;

2,分压原理;

3,戴维南定理;

4,能量守恒定律。


1欧姆定律(Ohm's law)

电路基本原理那些事儿之 欧姆定律_第1张图片

欧姆定律(Ohm's law)是如此的重要,所以我把它放在了第一位。虽然大家几乎都能够立刻说出它的表达式,但是这里我们还是要再强调一次:

(其中,V是电压,I是电流,R是电阻)

可能有人会疑惑,欧姆定律我们从初中物理开始学习,已经学了近十年了,也没看到它有什么过人之处啊。现实情况就是如此,虽然欧姆定律被大家所熟识,但在实际应用中却常常被忽视。

以下的故事是我亲身经历,也是我第一次在实践中感受到欧姆定律的巨大威力。

刚毕业那会儿,我实习参与了一个项目。电路里有一个功能,用来实时监测输入的12V直流电压源,我把12V电压用分压原理(这也是一个重要的基础知识,后续文章将会讲到)降到3V以后,输入单片机的A/D引脚进行采集,然后再将采集到的电压乘以4倍还原成12V电压。理论上没有任何问题,但是实际单片机采集出来的电压值一直小于3V,造成最后换算出来的电源电压一直小于12V。

/  是什么原因导致输出小于12V呢? /

其他工程师分析了很多种可能性,什么电阻的温漂啊,电流的相位移啊,电磁干扰啊,单片机采样速率不够啊,软件滤波算法不够强大啊一类的,都是些让我当时相当迷糊的概念。大家分析了很久,都找不到解决方法。

/  可能性很多,如何精确定位? /

当时我坐下来看着电路板发呆,突然有个假想,是不是我们送到单片机A/D引脚的电压就不到3V呢?因为单片机的引脚在底面,所以根本没法用万用表去直接测量。我用小刀刮开PCB阻焊层,露出A/D的走线铜箔,然后用万用表测量其电压,这时候万用表上的读数真真切切地停留在了2.85V上,我又换了一个万用表来测,结果还是2.85V,所以我们得到A/D转换后的12V电压只有2.85x4=11.4V!

/  问题找到了,那原因是什么? /

然后我进一步去查找问题的根源,我发现电路板上焊的2个分压电阻,一个是100欧姆,另外一个是300欧姆,这个时候欧姆定律出现在了我的脑海里,导线也有电阻,根据欧姆定律V=I*R,如果电流大到一定程度,导线产生的压降V将不能忽略!

解决问题的思路是这样的:如果把分压电阻放大,那么整个回路上的电流就会减小,而导线上的电阻是不会变的,那么相应的导线电阻产生的压降V也会降低了。

我激动地立刻把分压电阻100欧姆换成了10K欧姆,300欧姆换成了30K欧姆,然后神奇的事情发生了!我们的单片机输出变成了12V!

/  问题似乎解决了,是否是巧合? /

问题似乎解决了!但是我还不能十分确定,因为之前还提到了什么温漂啊,电磁干扰啊一类的可能性,为了验证我的思路是正确的,我又换回了原来的100欧姆和300欧姆的分压电阻,果然单片机输出又变成了11.4V。这么一来我就确定问题的原因了:导线上的电阻产生了压降,迫使分压后,输入单片机的电压不足3V。

/  解决问题的方法就是欧姆定律! /

当我把这个结果告诉另外的工程师时,几乎没有人相信我,他们仍在讨论是什么电磁干扰,温漂引起的。我仍然坚持自己的观点,并且把他们带到焊台边上,重新复现了这个问题,他们才相信原来真是这么简单的问题导致的。

这个故事我讲完了,但是类似这样的问题,在我从业的十一年里,几乎每年都会碰到一两次。每次都会“重新”发现一次欧姆定律,对于基础知识很多人太容易忽略了。

/  有时候问题没你想象的那么难! /

后来我还听过一个笑话,有个电子工程师家里的电视机坏了,他把电视机拆开,从头到脚把各个他觉得“可能”存在问题的芯片换了一遍,最后发现是常用的电视机电源插座内部接线松了,从外部根本看不出来,直到他换了一个插口才发现,原来电视机根本没有坏!只是没电了!后来他的同事知道了这件事,每次都会问逗他“你家电视机今天坏了吗?”。

多么痛的领悟!所以无论任何时候,在你试图去寻找更复杂的解决方法的时候,不防从最基本的可能性开始做起。

基础知识是最重要的,无论什么时候强调都不过分:基础知识最重要!

欧姆定律是电子学里面最基本的原理,它是所有其他定律的基础。

电阻的本质就是会阻碍电流的流动,因此会在电阻的两端产生压降,而任何器件都不是理想的,例如上面说的导线也有电阻,PCB电路板上的走线也会有电阻!

<  关于电阻我们还可以联想到什么? >

然后我们也可以顺着这个思路出发,既然任何元器件都不是理想的,那么不仅有电阻,还会有电容,有电感!而这些(寄生)电阻、电容、电感是否会对电路产生影响,则要看具体的应用环境,例如电阻的(串)并联问题,即是否显著增大/减小原来设置的阻值,而电容和电感则可以看做是依赖于信号频率的电阻(后续文章将会详细介绍),那么电容和电感其实也可以套用欧姆定律:,而则表示某种频率下,电容/电感的“阻抗”。

欧姆定律我们就介绍到这里,下一篇文章我们将会介绍另外一个基本原理——分压原理。不仅电阻适用于分压原理,电容、电感也是可以的!同时我们还会介绍电阻、电容、电感的串并联,都是很基础但却是异常重要的知识。

你可能感兴趣的:(电路基本原理那些事儿之 欧姆定律)